

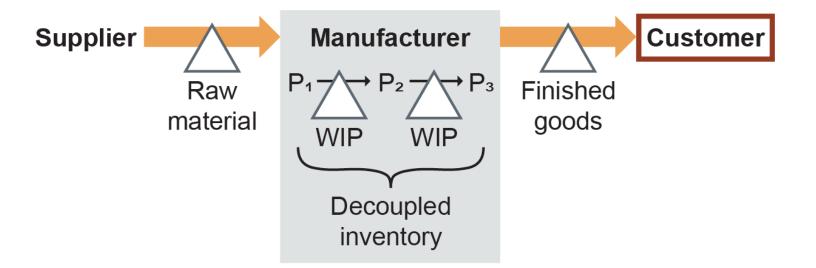
MODULE 6: INVENTORY

Module 6 Overview

Inventory

- Section A: Inventory Planning
- Section B: Inventory and Product Costs, Value, and Metrics
- Section C: Itemized Inventory Management
- Section D: Inventory Control

SECTION A: INVENTORY PLANNING



Section A Overview

Section A Learning Objectives

- Purposes and goals of inventory
- Inventory types and classifications
- Functions of inventory (e.g., buffering supply and demand)
- How classifications can change over inventory life
- Inventory in service industries
- Aggregate versus itemized inventory policies
- Tradeoffs in inventory levels and accuracy targets
- ABC classification
- Item segmentation for special inventory

Purposes of Inventory Management

- Better customer service
- Greater operating efficiency
- Longer production runs

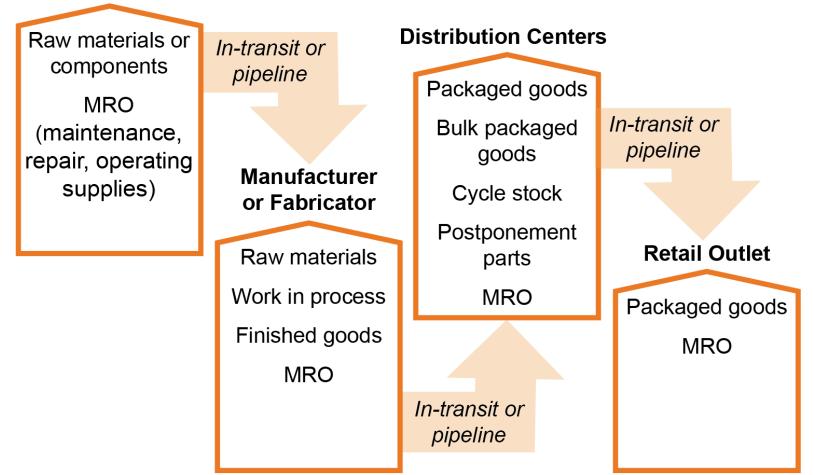
- Volume purchases
- Optimal inventory investment
- Better sustainability

Minimizing Inventory Investment

Total investment in inventory depends on perspective.

- Internal: Finance has incentive to push for low inventory levels. (Purchasing may or may not.)
- Entire organization: May minimize inventories at expense of others in supply chain.
 - If suppliers hold more, more smaller lots increase total.
- Supply chain and lean perspective: Minimize total inventory anywhere in supply chain; then sell more due to lower price. (Share savings.)

Topic 1: Purposes and Goals of Inventory


Maximizing Manufacturing Efficiency

- Smooth, uninterrupted flow; no over- or undercapacity.
- Decoupling supply from demand:
 - Supplier from customer
 - Work center from work center (diverse rates, spontaneous bottlenecks)
 - Capacity or materials available sooner than needed
- Other: Level strategy, long runs, few setups, large lots.
- Only good reason to hold inventory is when not carrying it would be more costly overall.

Inventory in the Supply Chain

Suppliers

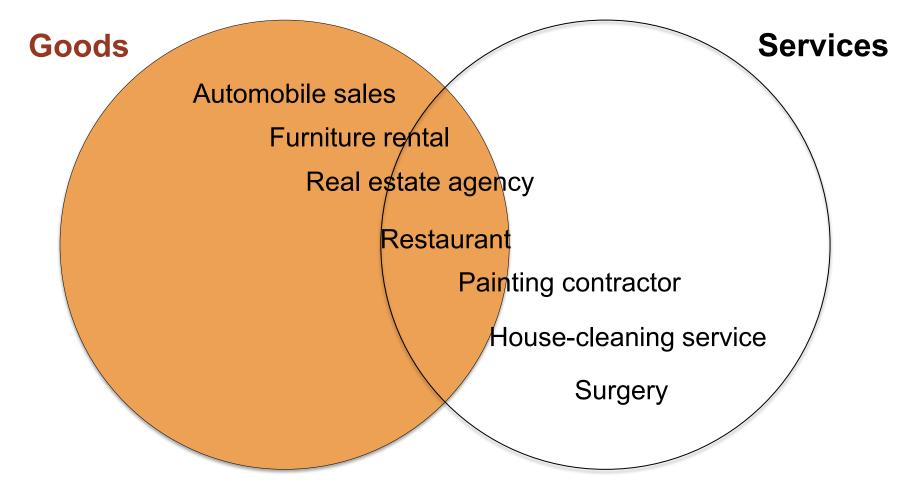
APICS

Inventory Functions

- Safety stock
- Decoupling/buffers
 - Material/backlog
 - TOC material or time buffer
- Anticipation inventory
- Lot-size inventory (cycle stock)
- Transportation inventory
- Hedge inventory

Inventory Over Time

Time


Inventory in the Service Industry

- Goods that facilitate delivery of service
- Subject to same challenges of excess inventory, insufficient inventory, perishability
- Major influence on how the service "product" is designed

Goods and Services Exercise

Negotiating Tradeoffs in Competing Views

	Marketing	Operations	Finance
Conventional objective	Increase revenue and satisfy customers	Reduce manufacturing cost	Increase profit and cash flow, reduce investment
Customer service		Ļ	
Production efficiency			1
Inventory investment			

Impact of Sourcing Risks on Inventory Planning

- PESTEL risks (political, economic, social, technological, environmental, and legal).
- Sourcing risks cannot be offset entirely by inventory policies that create buffers, since inventory has inherent risks (e.g., theft, damage, obsolescence).
- Best practice is to prioritize safety stocks for critical inventory and develop resiliency in supply chain to manage residual risks.

Topic 3: Inventory Policy

ABC Inventory Control

Pareto's law (80–20) basis for ABC classification*

	Items	Value
Α	10–20%	50–70%
В	20%	20%
С	60–70%	10–30%

- A: critical few. High security, tightly controlled safety stock, frequent counting.
- **B:** average. Average controls and ordering.
- C: trivial many. Order many few times a year, minimal control or counting.

Value (factors may affect individual ranking)

- Annual dollar usage (units × cost)
- Bottleneck materials
- Shelf life
- Replenishment lead time
- Importance of stockout to customers
- Turnover

*All percentages from ASCM Supply Chain Dictionary definition of ABC classification.

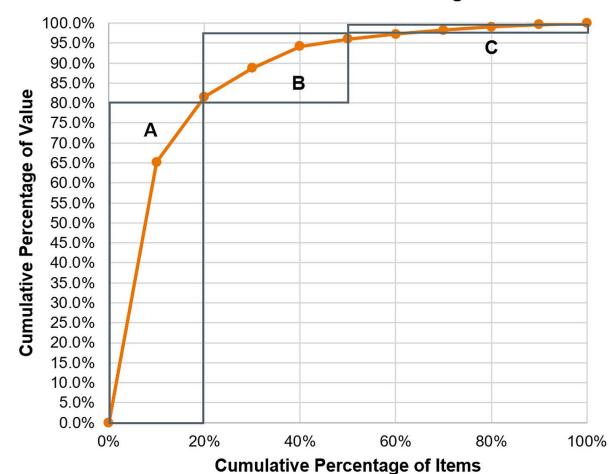
Topic 3: Inventory Policy

Possible Impacts of ABC Classification

- Frequency of counting
- Frequency of forecast reviews
- Reengineering of products
- Amount of safety stock or safety lead time
- Where an item is stored
- How it is controlled and replenished

ABC Inventory Control Steps (Annual Dollar Usage)

- 1. Multiply annual unit usage by unit cost to find annual dollar usage per product or product family.
- 2. Rank products by annual dollar usage (highest to lowest).
- 3. Calculate cumulative percentage of total items.
- 4. Calculate cumulative percentage of annual dollar usage.
- Assign A, B, and C classifications based on step 4 (A: 50%–70% of value; B: 20%; C: 10%–30%*).


*All percentages from ASCM Supply Chain Dictionary definition of ABC classification.

ABC Inventory Ranked by Annual Dollar Usage

Part Number	Annual Dollar Usage	Cumulative Dollar Usage	Cumulative Percent of Total Items	Cumulative Percent of Dollar Usage	Class
			0%	0.0%	
232	\$36,000	\$36,000	10%	65.2%	А
332	9,000	45,000	20%	81.5%	А
343	4,000	49,000	30%	88.8%	В
665	3,000	52,000	40%	94.2%	В
443	1,000	53,000	50%	96.0%	В
875	700	53,700	60%	97.3%	С
218	500	54,200	70%	98.2%	С
989	500	54,700	80%	99.1%	С
783	300	55,000	90%	99.6%	С
163	200	\$55,200	100%	100.0%	С
SUM	\$55,200				

Cumulative Percent of Dollar Usage

Cumulative Percent of Dollar Usage

ABC Classification Exercise

Item	Annual
number	dollar usage
1	\$13,189
2	156,127
3	344
4	8,493
5	42,749
6	5,589
7	19,562
8	241,873
9	1,962
10	10,112
Total	\$500,000



ABC Classification Exercise

ltem number	Annual dollar usage	Cumulative dollar usage	Cumulative percent dollar usage	Cumulative percent of items	Class
8	241,873	241,873	48.37	10	А
2	156,127	398,000	79.60	20	A
5	42,749	440,749	88.15	30	В
7	19,562	460,311	92.06	40	В
1	13,189	473,500	94.70	50	В
10	10,112	483,612	96.72	60	С
4	8,493	492,105	98.42	70	С
6	5,589	497,694	99.54	80	С
9	1,962	499,656	99.93	90	С
3	344	500,000	100.00	100	С
	500,000				

Inventory That Requires Special Handling

Characteristics of inventory may create unique risks that must be managed through transportation, warehousing, and inventory policy.

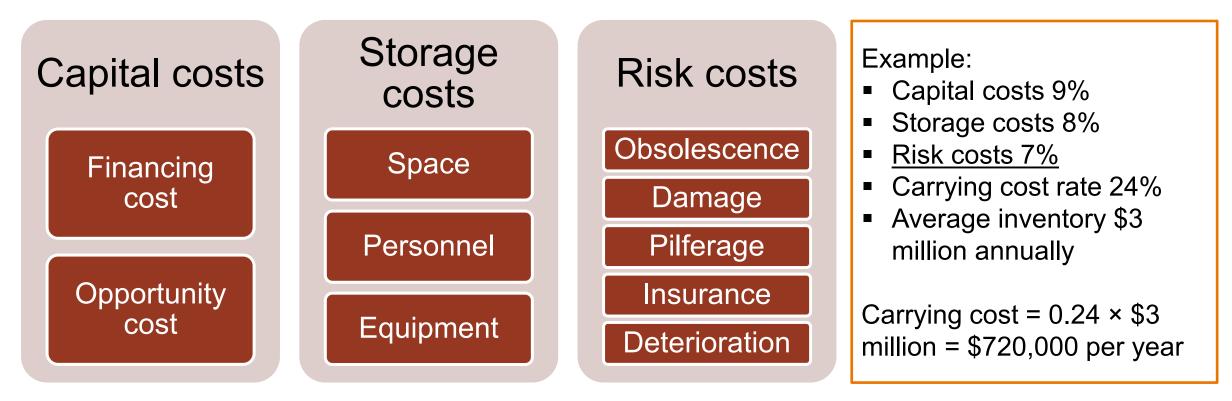
SECTION B: INVENTORY AND PRODUCT COSTS, VALUE, AND METRICS

Section B Overview

Section B Learning Objectives

- Categories/interactions of inventory costs
- Risk pooling
- Financial versus managerial accounting
- Basics of financial statements
- Inventory metrics
- Inventory valuation
- Standard or actual costs, transfer pricing

- Cost classifications
- Absorption and variable costing
- Product costing: throughput, variable, full absorption, and life cycle
- Job-order, process, and operation costing
- Activity-based costing
- Measuring variances
- Non-value-added activities



Types of Inventory Costs and their Interactions

Calculating Carrying Costs

Carrying Cost = Carrying Cost Rate × Average Inventory Level in Dollars

Topic 1: Inventory Costs and Risk Pooling

Calculating Ordering Costs

- Purchasing cycle costs (managing and expediting)
 - Cost of each PO or each release against contract
- Factory costs
 - Production control
 - Setup (includes teardown)
 - Lost capacity

Example:

- \$200k in annual wages
- \$80k in operating expenses
- 4,000 orders per year
- \$100 setup per order

Average Ordering Cost per Order =
Fixed Cost
Number of Orders + Variable Cost

$$\frac{$200,000 + $80,000}{4,000 \text{ orders}} + $100 \text{ per order}$$

= \$170 per order

Tradeoff Calculation

	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Sales forecast	2,000	3,000	4,000	3,000
Production	3,000	3,000	3,000	3,000
Ending inventory	1,000	1,000	0	0
Average inventory	500	1,000	500	0
Inventory cost	\$1,500	\$3,000	\$1,500	\$0
Total cost of carrying inventory = \$6,000				

Topic 1: Inventory Costs and Risk Pooling

Annual Cost Calculations

These are the annual costs and order numbers for an import warehouse:

- Wages for purchasing: \$80,000; purchasing expenses: \$70,000; customs brokerage: \$45 per order
- Estimated cost of inventory financing: 10 percent; storage costs: 7 percent; risk costs: 10 percent
- Average inventory: \$500,000
- Orders placed in a year: 10,000

What are the annual ordering costs, carrying costs, and average ordering cost?

Annual ordering cost Annual carrying cost Total annual cost Average ordering cost

- $= \$80,000 + \$70,000 + (\$45 \times 10,000) = \$600,000$
- = 0.27 × \$500,000 = \$135,000
- = \$600,000 + \$135,000 = \$735,000
- = \$600,000 \div 10,000 = \$60 per order

Risk Pooling

Aggregates demand and centralizes inventory, reducing effect of variability in demand and lowering stockout and carrying costs.

However, risk pooling works best when

- Demand patterns are similar among markets.
- Customer lead time remains acceptable.
- Net effect of inbound and outbound transportation costs is lower.

Financial vs. Managerial Accounting

Financial accounting	Managerial accounting	
 For external audiences Shareholders Creditors Tax authorities Regulators Must be GAAP-/IFRS-compliant Content, format, and timing all defined 	 For internal audiences (managers) Not necessarily GAAP- or IFRS-compliant Can omit some things to aid decision making More timely More varied in focus and scope 	

Balance Sheet

- Assets = Liabilities + Owners' Equity; Owners' Equity = Assets Liabilities
- Example (assets: \$5,000, liabilities: \$3,000):
 - Owners' equity = \$2,000 (If initial investment was \$1,000, firm value went up.)
 - Pay \$1,000 dividend: Assets go down by \$1,000 (cash, an asset) and owners' equity goes down by \$1,000.
 - Still in balance: Assets are \$4,000, liabilities are \$3,000, and owners' equity is \$1,000.
- Inventory is often large percentage of assets, but more assets require more liabilities or owner investment.

Topic 2: Basic Accounting and Inventory

	BALANCE SHEETS	In Millions (000,000)
Delemen Cheetfer Two Veers	December 31,	Year 2	Year 1
Balance Sheet for Two Years	Assets		
	Current Assets		
	Cash and Cash Equivalents	\$96.5	\$56.3
	Inventory	59.9	60.4
	Accounts Receivable	48.4	44.3
	Total Current Assets	204.9	161.1
	Fixed Assets		
	Gross Property, Plant, and Equipment	70.0	60.0
Assets =	Less: Accumulated Depreciation	12.1	7.5
	Net Property, Plant, and Equipment	57.9	52.5
Liabilities + Owners' Equity 🚺	Total Assets	\$262.8	\$213.6
	Liabilities		
	Current Liabilities		
	Accounts Payable	20.0	19.6
	Short-Term Notes Payable	7.5	6.0
	Total Current Liabilities	27.5	25.6
	Long Term Liabilities		
Average Inventory =	Long-Term Debt	60.0	60.0
	Total Liabilities	87.5	85.6
\$59.9 + \$60.4	Owners' Equity		
	Common Stock (Par Value)	11.0	10.0
2	Additional Paid-In Capital	66.0	54.0
	Retained Earnings	98.3	64.0
	Total Owners' Equity	175.3	128.0
	Total Liabilities and Owners' Equity	\$262.8	\$213.6

Income Statement

- Income = Revenue Expenses
- Deductions occur in stages:
 - Revenue COGS = Gross Profit
 - Gross Profit Operating Expenses Depreciation Interest Expense = Net Income Before Taxes
 - Net Income Before Taxes Taxes = Profit (Loss)
- Raw materials and WIP made into finished goods and sold are in COGS as an expense that reduces profit.
- Unsold inventory is asset on balance sheet (ties up cash) but is not revenue or expense yet.

Topic 2: Basic Accounting and Inventory

Income Statement for Two Years

INCOME STATEMENTS (000,000s) ex per share a		
For the Years Ending	Year 2	Year 1
Revenue (Sales)	\$302.6	\$276.9
Direct Labor	38.3	37.6
Direct Materials	101.5	99.7
Factory Overhead	26.6	26.1
Less: Cost of Goods Sold (COGS)	166.4	163.4
Gross Profit	136.2	113.5
Less: Operating Expenses		
Selling Expenses	30.3	24.9
General and Administrative	27.2	22.2
Lease Expense	12.1	8.3
Less: Total Operating Expenses	69.6	55.4
Less: Depreciation	4.6	4.0
Less: Interest Expense	3.9	3.9
Net Income (Profit) Before Taxes	58.1	50.3
Less: Income Taxes	16.3	14.1
Net Income (Profit)	\$41.8	\$36.2
Net Income (as a Pct. of Revenue)	14%	13%
Net Income Per Share-Basic	\$3.95	\$3.78

"The bottom line"

Topic 2: Basic Accounting and Inventory

Net Income Exercise

Revenue		\$1,500,000
Cost of goods sold		
Direct labor	\$300,000	
Direct material	\$500,000	
Overhead	\$400,000	
Total cost of goods sold		\$1,200,000
Gross margin (gross profit)		\$300,000
General and administrative expenses		\$150,000
Net income (profit)		\$150,000

Topic 2: Basic Accounting and Inventory

Statement of Cash Flows for Two Years

CASH FLOW STATEMENTS	In Millions	(000,000)	
Year	Year 2	Year 1	
Operating Section			
After-Tax Net Income	\$41.8	\$36.2	
Depreciation Add-Back	4.6	4.0	
(Increase)/Decrease in Inventory	0.5	(8.6)	Less cash
(Increase)/Decrease in Accounts Receivable	(4.1)	(4.1)	
Increase/(Decrease) in Accounts Payable	0.4	1.8	
Cash Flow from Operations	43.2	29.3	
Investing Section			
Capex Spend (Capital Expenditures)	(10.0)	(10.0)	
Cash Flow from Operations and Investment	33.2	19.3	
Financing Section			
Additional Equity Capital	13.0	7.0	
Less Dividends Paid	(7.5)	(5.0)	
Increase/(Decrease) in Long-Term Debt	-	-	
Increase/(Decrease) in Short-Term Notes	1.5	(1.5)	
Cash Flow from Operations, Investments,			
and Financing	40.2	19.8	
Beginning Cash Balance	56.3	36.5	
Ending Cash Balance	\$96.5	\$56.3	

Average Inventory and Inventory Turnover

- Converting inventory quickly to sales is highly valued.
- Average inventory from balance sheet (two years).
- Cost of goods sold (COGS) from income statement.

Average Inventory =
$$\frac{\text{Inventory at Period Start + Inventory at Period End}}{2}$$
$$= \frac{\$60,400,000 + \$59,900,000}{2} = \$60,150,000$$
Inventory Turnover =
$$\frac{\text{Annual COGS}}{\text{Average Inventory in Dollars}}$$
$$= \frac{\$166,400,000}{\$60,150,000} = 2.77 \text{ Times}$$

Topic 2: Basic Accounting and Inventory

Inventory Turnover Exercise

Annual cost of goods sold is \$48 million, and the average inventory is \$12 million. Calculate the following:

- Inventory turnover:
- Average inventory if inventory turns are increased to 10 times per year:
- Reduction in inventory with this improvement:
- Annual savings if cost of carrying is 20% of average:

$$= \frac{\$48,000,000}{\$12,000,000} = 4$$

$$= \frac{\$48,000,000}{10} = \$4,800,000$$

- = \$12,000,000 \$4,800,000 = \$7,200,000
- $= 20\% \times \$7,200,000 = \$1,440,000$

Calculating Inventory Turnover

- A snacks manufacturer lists a COGS of \$15 million on its income statement on revenue of \$90 million.
- At the beginning of the year, inventory was valued at \$2.5 million; at the year's end, it was \$2 million.

What is the company's inventory turnover?

Answer:

\$15 million / <u>(\$2.5m + \$2m)</u> = 6.67 turns

2

Days of Supply

- How long units will last at average daily usage if nothing new is made.
- Policy may be set at certain number of days of supply:
 - This may be very few units for slow-selling inventory.
 - -When to reorder: If 10 days' lead time, order 10 days of supply.
- Example: 2,000 units on hand, 200 units sold per day

Days of Supply =
$$\frac{\text{Inventory on Hand}}{\text{Average Daily Usage}}$$
$$= \frac{2,000 \text{ Units}}{200 \text{ per Day}} = 10 \text{ Days}$$

FIFO, LIFO, Average Cost, and Specific Identification

	First In, First Out	Last In, First Out	Average Cost
To describe inventory movement (can mix methods)	Pick from oldest items first.	Pick from newest items first.	Can't pick average item; may account for bulk storage.
Accounting method (just one), prices rising	COGS understated	Actual current COGS	Can't get actual cost from average.
prices falling	COGS overstated		
Value of unsold inventory	Fairly current	Given inflation, can be grossly understated.	Halfway between FIFO and LIFO.
Specific identification tra	acks specific units purcha	ased and their cost.	

Topic 2: Basic Accounting and Inventory

Standard Cost Accounting

- Management decision tool or inventory valuing method.
- Standard hours, standard materials.
- Period end: differences from actual as variances.
- Accountants still must use LIFO, FIFO, average cost, or specific identification for financial statements.

Topic 2: Basic Accounting and Inventory

Variances and Transfer Pricing

Variances

Baseline: budget or standard cost

Positive or negative variances

Materiality

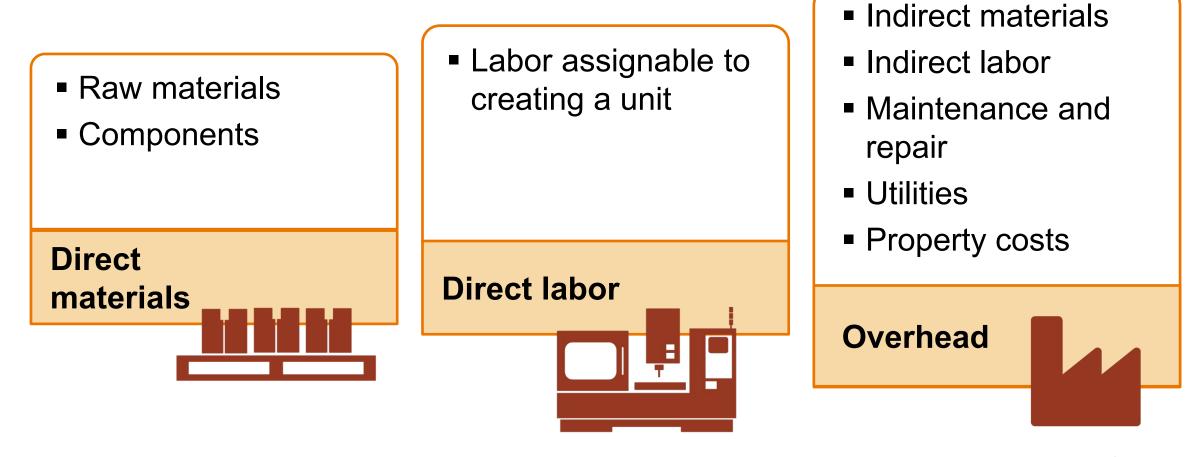
Aggregate to study total variance

High-value items = higher impact

Standard costing: rate and volume

Transfer pricing

- Transfer inventory and related costs from one internal subsidiary to another.
- Cost, market price, or negotiated price. (Consider incentives each creates.)
- Tax authorities scrutinize (e.g., hightax to low-tax country transfers), and there are numerous regulations.



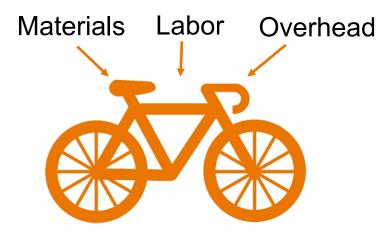
Cost Classifications and Their Purpose

Cost Classification	Purpose
Manufacturing and non-manufacturing costs	External reporting
Direct and indirect costs	Product pricing and performance control
Product and period costs	External reporting
Variable and fixed costs	Analyzing cost behavior under different conditions
Differential, sunk, and opportunity costs	Analyzing investment alternatives
Costs of quality	Assessing value gained or lost through quality practices

Manufacturing Costs

Non-Manufacturing Costs

- Marketing or selling costs
 - -Advertising
 - -Shipping
 - Selling expenses
 - -Warehousing


- Administrative costs
 - -Accounting
 - -HR
 - Management

Direct and Indirect Costs

Direct costs

Variable costs (materials and labor and some overhead) that can be attached to a particular job/operation

Indirect costs

Overhead expenses that are allocated to units of goods by some standard method

When Recognized (Posted) on Income Statement?

Product costs

- Recognized when item is sold.
- Before then, value of material is shown as inventory on balance sheet.
- Include direct materials and labor and assignable overhead.

Period costs

- Expensed at time of purchase.
- Include selling and administrative expenses.
- Not included in COGS.

Variable and Fixed Costs

Variable cost

Increases with number of items produced (e.g., direct materials consumed, sales commissions)

Fixed cost

Does not vary with production volume (e.g., rent, property tax, some salaries)

1 bike = \$500 2 bikes = \$1,000 10 bikes = \$5,000

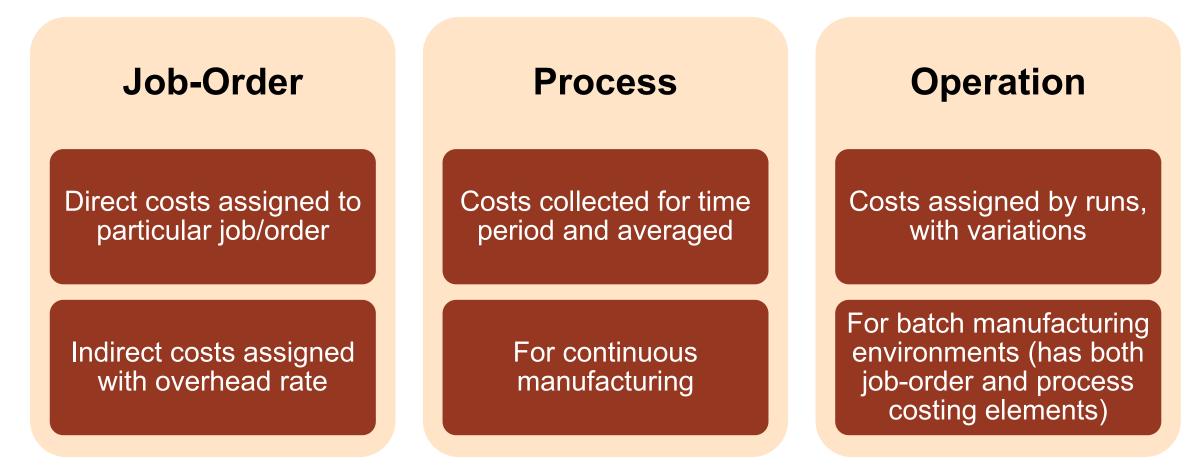
Factory fire insurance monthly cost

Product Costing Methods

	Throughput costing	Variable costing	Full absorption costing	Life-cycle costing
Direct materials				
Direct labor				
Variable factory overhead				
Fixed factory overhead				
Non-factory costs (sales, administration, distribution)				
R&D, design, customer service, disposal				

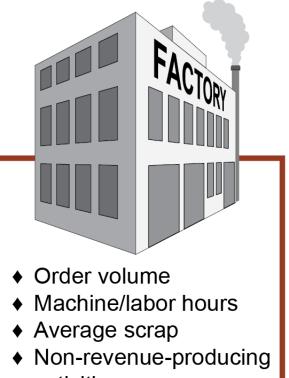
Absorption and Variable Costing Approaches

Absorption costing

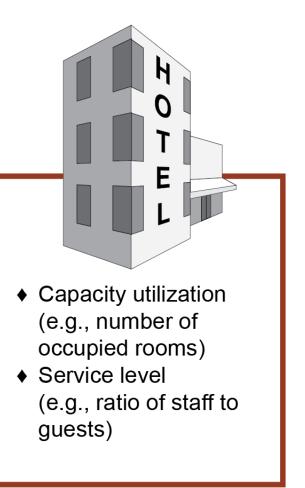

- Variable costs + portion of fixed costs are assigned to each unit.
- Includes costs beyond a manager's control.

Variable costing

- Only variable costs are assigned, not overhead.
- Useful for internal planning because it isolates production costs under a manager's control.

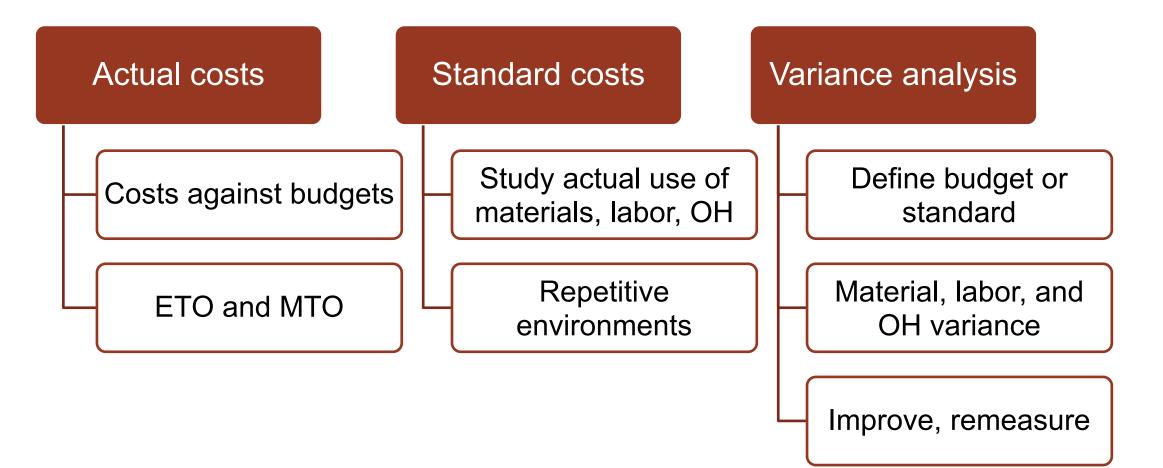

How much does it cost to make product X?

Job-Order, Process, and Operation Costing



Activity-Based Cost Accounting

activities (e.g., maintenance and repairs, inspections)


What are the key cost drivers for an activity?

- Only costs associated with capacity used to produce a product are assigned to it.
- Does not include costs associated with excess capacity.

Topic 4: Managing Product Costs

Identifying Variances in Cost

Forms of Waste

Waste	Description
Waste of overproduction	Making more components/finished goods than needed
Waste of waiting	Queuing delays
Waste of transportation	Excess or unneeded movement
Waste of stocks	Inventory not needed to fill orders; keeping of unnecessary raw materials, parts, work-in-process
Waste of motion	Wasted operator actions that add no value
Waste of making defects	Product or service not meeting specifications
Waste of processing itself	Unnecessary or inefficient steps in a process, doing more than customer requires
Waste of people skills	Waste of human potential, capabilities, knowledge

SECTION C: ITEMIZED INVENTORY MANAGEMENT

Section C Overview

Section C Learning Objectives

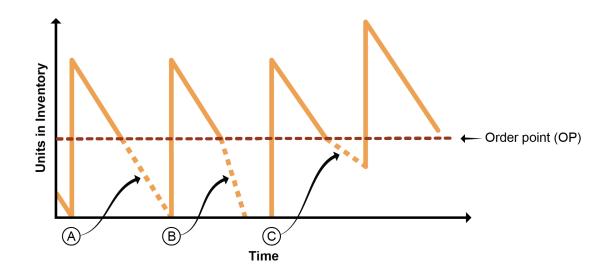
- When to order: item ordering policies (order point and periodic review)
- Order point triggers
- How much to order: economic order quantity (EOQ) constraints, modifiers, and uses
- Lot size techniques (fixed order quantity, lot for lot)
- Calculating safety stock
- Safety lead time
- Managing special inventory, including for remanufacturing industry

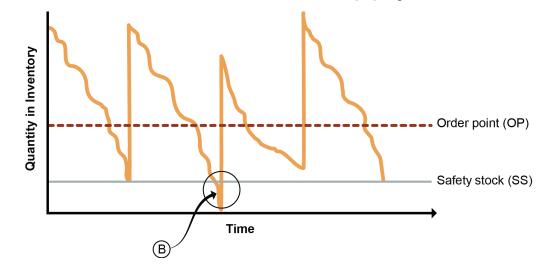
Push, Pull, and Push-Pull


Push	Pull
What/Wh	nen to Make
Inventory on handMake to forecast/DC orders	Low or no inventoryMake to specific orders
ls	sues
Bullwhip effectObsolescencePoor customer service	Demand variabilitySupply disruptionsLong lead times
Who Orde	ers and How
 Central supply ordering Fair distribution Requires ownership or agreement 	 Independent demand ordering Autonomy Shortages, but market pricing rations goods

Push-Pull Replenishment

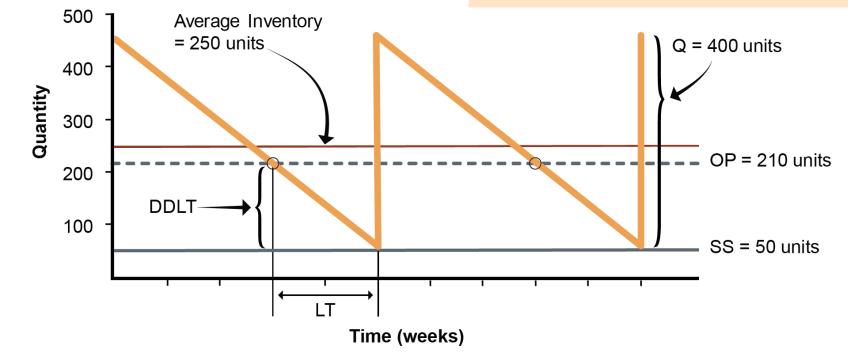
- Schedule delivery (push) but DC sets quantity (pull), or
- EOQ/minimum (push) but DC sets timing (pull)


Order Point System



Topic 1: Push or Pull Replenishment

Effect of Uncertainty


Safety stock is needed to address demand and resupply uncertainty.

Order Point Systems

Units per period = 80/week LT = Lead time (2 weeks) DDLT = Demand during lead time (80 x 2) SS = Safety stock (50 units) Q = Lot size quantity (400) units OP = Order point = DDLT + SS = 210 units

Order Point Systems

Assumptions

- Demand relatively stable with random variation
- Order point sooner if demand above average, later if demand below average
- Fixed order quantities (possibly set using EOQ)

Demand During Lead Time = Units per Period × Lead Time

= 80 Units per Week × 2 Weeks = 160 Units

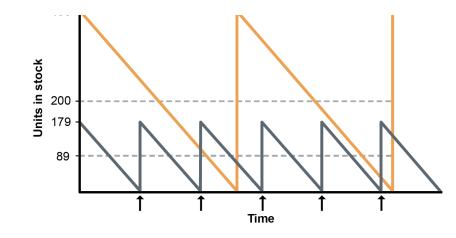
Order Point = Demand During Lead Time + Safety Stock

210 Units = 160 Units + 50 Units

When Order Point Is Reached: Perpetual Inventory

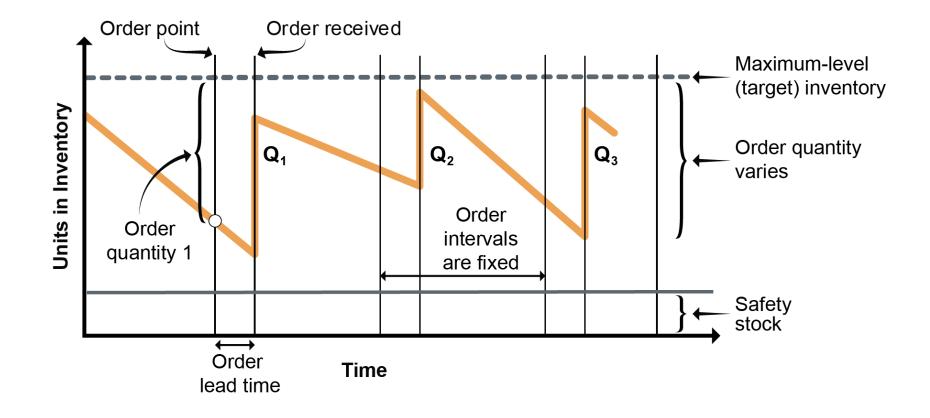
- Current transactions record (e.g., ERP)
- Record inaccurate? Shrinkage, errors
- Scenario: Demand averages 80 units/week
 - Allocated (to orders) reduces available but not on hand

Part: 68 Lead Ti	32 me : 1 week		Name: Hydra Order Pointű	aulic door clo 210	oser, silver Quantity: 40	0
Week	Ordered	lssued	Received	On Hand	Allocated	Available
0				350		350
1				350	70	280
2				350	80	200
3	400	70		280	90	110
4		80	400-	600	85	425
5		90		510	75	350


When Order Point Is Reached: Two-Bin, Kanban

Two-bin systems

- Fixed-order system
- Reorder when first bin empty
- On receipt, put excess in working bin
- Useful for C items

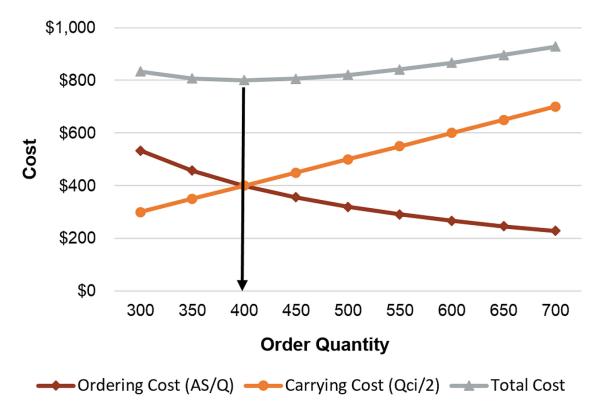

Kanban systems

- Visual signals
 - Card, light, empty container
- Visual demand-pull system so less record keeping
- Lower EOQ, more stockout risk

Periodic Review or Fixed Reorder Interval

Periodic Review Systems

- Review periods and lead times are constant.
- Orders placed at start of review period.
- Order size based on demand during review period.
- Scenario: 50 units per day average demand (D), 100 units safety stock (SS), 7-day review period (R), 2-day lead time (L), 150 units on-hand inventory (I)

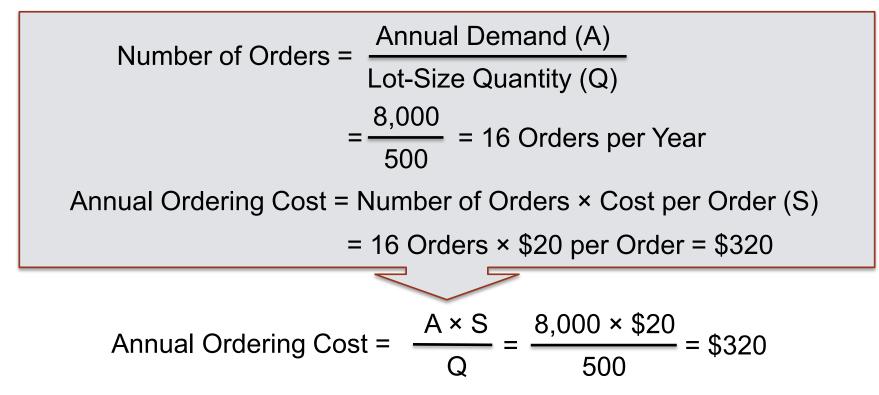

Target Level (T) = $D \times (R + L) + SS$

= 50 Units per Day × (7 Days + 2 Days) + 100 Units = 550 Units

Order Quantity (Q) = T - I = 550 Units – 150 Units = 400 Units

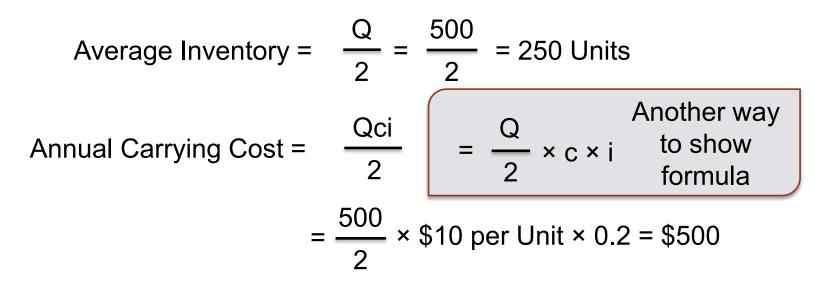
Topic 2: Economic Order Quantity and Lot-Size Rules

Economic Order Quantity


A guiding concept built on simplifying assumptions

- Demand is known and constant.
- Lot and batch production.
- Inventory costs are known and constant.
- Replenishment all at once.

EOQ Process, Step 1 (Annual Ordering Cost)


Scenario: DC annual demand of 8,000 units, current lot size of 500, cost per order of \$20

EOQ Process, Steps 2 (Annual Carrying Cost) and 3 (Total Inventory)

Scenario: Cost/unit (c): \$10, carrying cost rate (i): 20% or 0.2

Total Inventory Cost = Annual Ordering Cost + Annual Carrying Cost

= \$320 + \$500 = \$820 EOQ is when ordering cost = carrying cost (not there yet)

Topic 2: Economic Order Quantity and Lot-Size Rules

EOQ Process, Step 5: Find EOQ using Trial and Error or Formula

	O	nly Q chan	ges				
Annual		Order		Carrying	Ordering	Carrying	
Demand	Order	Quantity	Cost per	Cost	Cost	Cost	Total
(A)	Costs (S)	(Q)	Unit (c)	Rate (i)	(AS/Q)	(Qci/2)	Cost
8,000	\$20	300	\$10	0.2	\$533	\$300	\$833
8,000	\$20	350	\$10	0.2	\$457	\$350	\$807
8,000	\$20	400	\$10	0.2	\$400	\$400	\$800
8,000	\$20	450	\$10	0.2	\$356	\$450	\$806
8,000	\$20	500	\$10	0.2	\$320	\$500	\$820

 $EOQ = \sqrt{\frac{2AS}{2AS}}$

2 × 8,000 Units × \$20 per Order

0.2 × \$10 per Unit

= 400 Units

Where

- EOQ replaces Q (quantity)
- Annual demand (A) = 8,000 units
- Order costs (S) = \$20 per order
- Cost per unit (c) = \$10 per unit
- Carrying cost rate (i) = 20% = 0.2

Formula

Topic 2: Economic Order Quantity and Lot-Size Rules

EOQ Constraints and Their Modifiers

- Upper limit
 Modifiers
 Supplier lot-size requirements
 Volume price breaks
 Supply for entire period
- Scrap or yield adjustments

Lower limit

Topic 2: Economic Order Quantity and Lot-Size Rules

Using Continuous Improvement to Change EOQ

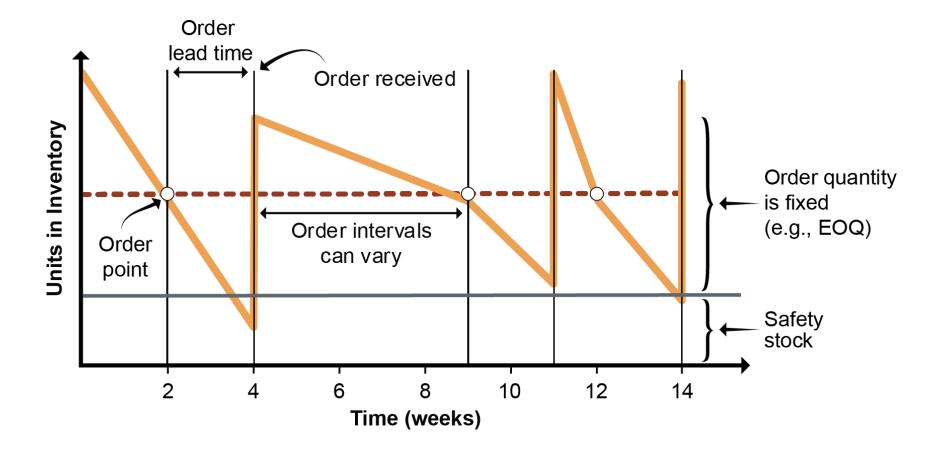
- Reduce costs: shift curves and where they intersect.
- Partly controllable (not all by manufacturing).
 - -Annual demand (market forces, marketing)
 - Unit cost (purchasing or manufacturing, but takes time)
 - Carrying cost (market rates, risks, warehouse costs)
- Shorter time horizon: reduce annual ordering cost.
 - Fewer or faster setups
 - More contract buying (fewer POs)
 - -Automate purchasing cycle

Lot for Lot (L4L)

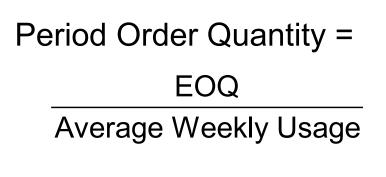
Order quantity is directly related to demand.
 There is no unused lot-size inventory.

Used to

- Plan and fulfill time-phased requirements for dependent and independent demand items
- Control investments in expensive, infrequently used, and/or perishable inventory
- Control waste in lean environments.


<u>ነ C</u>	
6	σ

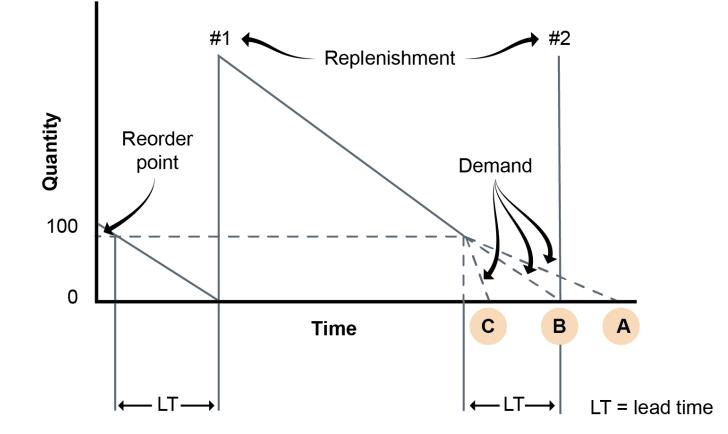
Topic 2: Economic Order Quantity and Lot-Size Rules


Fixed Order Quantity (FOQ)

Order *n* Periods

- Planners order enough inventory to meet needs for a specific number—*n*—of periods.
- The most cost-effective number of periods is the period order quantity.

Topic 2: Economic Order Quantity and Lot-Size Rules


Lot-Size Techniques Exercise

Technique	Efficient response to discrete period demand	Impact on inventory investment
Lot-for-lot	High	Low
POQ	Medium	Medium
Order <i>n</i>	Medium	Medium
EOQ	Low	High
FOQ	Low	High

Topic 3: Safety Stock and Safety Lead Time

Safety Stock Function

Point A: Zero inventory level is not reached before replenishment occurs; no stockout.

Point B: Zero inventory level is reached at replenishment; no stockout.

Point C: Zero inventory level is reached before replenishment; stockout.

Topic 3: Safety Stock and Safety Lead Time

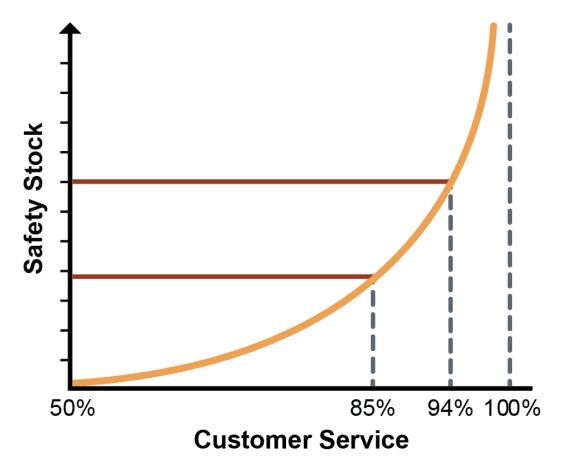
Factors for Determining Safety Stock

Targeted customer service level

Importance to customer

Demand variability during lead time

Forecast error

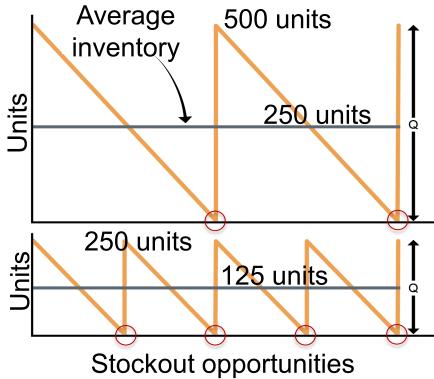

Order frequency

Duration of lead time

Establishing Appropriate Customer Service Levels

- Level of service (customer service ratio or number of allowed stockouts per period)
 - For example, 95%
 service level is 5%
 stockout percentage.
- Safety stock is one way to improve customer service.

Topic 3: Safety Stock and Safety Lead Time


Safety Stock Based on Acceptable Stockouts/Period

Π

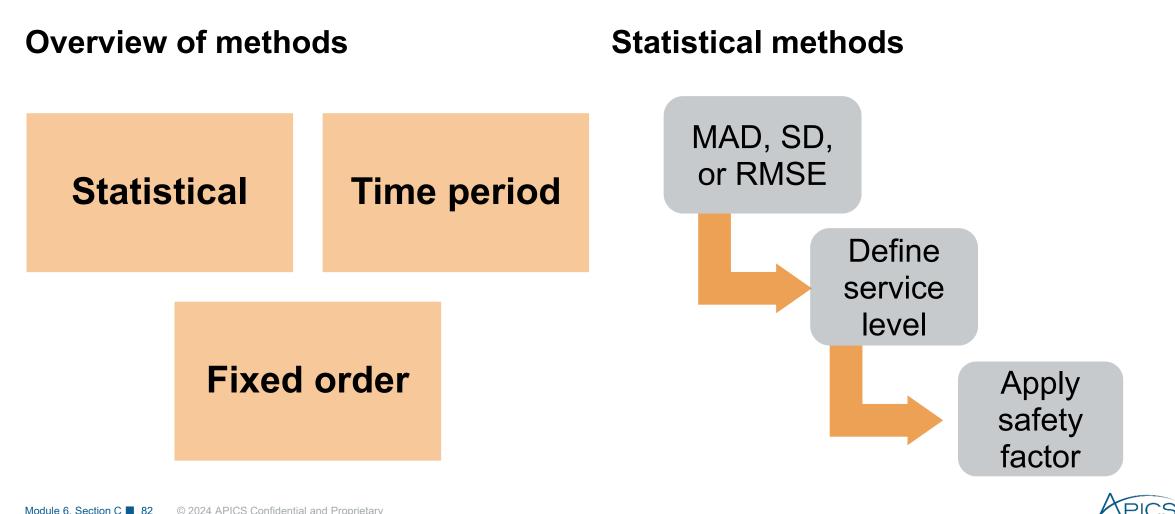
2.06

	Demand				
Orders per Period = Order	Quantity				
$=\frac{8,000}{400}$ = 20 Orders	per Year				
Customer Service Level =					
Orders per Period – Stockouts	6				
Orders per Period					
$=\frac{20-2}{20}=0.9=90\%$					
Customer Safety F	actor Table				
Service Level With SD or RMS	E With MA				

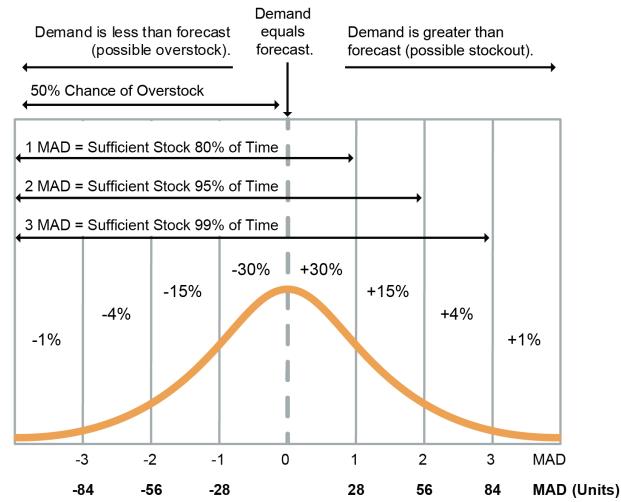
1.65

Safety Stock at 90% =

28 Units × 1.60 = 45 Units

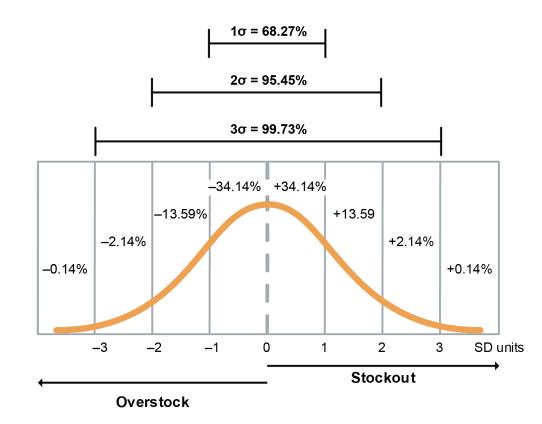


S


95.00

Topic 3: Safety Stock and Safety Lead Time

Calculating Safety Stock



Mean Absolute Deviation

Standard Deviations (σ) in a Normal Distribution

Given 50% probability of overstock:

- I SD: Sufficient stock 84.14% of time
- 2 SD: Sufficient stock 97.73% of time
- 3 SD: Sufficient stock 99.87% of time

Calculate Standard Deviation

- Sum and average demand for *n* periods.
- Subtract average from actual demand and square.
- Sum squared deviations and divide by n – 1.
- Calculate square root.

Week	Actual	Average (Sum of Actuals/10)	Actual – Average	(Actual – Average) Squared
1	1,100	1,076	24	576
2	950	1,076	-126	15,876
3	1,150	1,076	74	5,476
4	1,400	1,076	324	104,976
5	1,000	1,076	-76	5,776
6	900	1,076	-176	30,976
7	920	1,076	-156	24,336
8	1,300	1,076	224	50,176
9	990	1,076	-86	7,396
10	1,050	1,076	-26	676
Sum	10,760			246,240
Sum of (A	ctual – Av	erage) ² / n –	1	27,360
Standard	165			

Calculate Root Mean Squared Error

- Calculate error (Actual – Forecast).
- Square results.
- Sum squared errors and divide by n – 1.
- Calculate square root.

Week	Actual	Forecast	Actual – Forecast	(Actual – Forecast) Squared
1	1,100	1,050	50	2,500
2	950	1,000	-50	2,500
3	1,150	1,200	-50	2,500
4	1,400	1,320	80	6,400
5	1,000	1,025	-25	625
6	900	975	-75	5,625
7	920	900	20	400
8	1,300	1,125	175	30,625
9	990	1,000	-10	100
10	1,050	1,050	0	C
SUM	10,760	10,645		51,275
Average (SUM/n – 1)				5,697
RMSE (square root of average)				75

Safety Factor Table (Abridged)

Customer		Safety Factor			
	Service Level	With SD or RMSE	With MAD		
	50.00	0.00	0.00		
	90.00	1.28	1.60		
'	95.00	1.65	2.06		
	97.00	1.88	2.35		
	99.00	2.33	2.91		
	99.50	2.57	3.20		
	99.90	3.09	3.85		
	Safety Stock = I	MAD, SD, or RMSE in Units × Appropria	ate Service Factor		
MAD 90% Service Level = 28 Units × 1.60 = 45 Units					
SD 90% Service Level = 165 Units × 1.28 = 211 Units					
RMSE 90% Service Level = 75 Units × 1.28 = 96 Units					

Source: www.supplychainchannel.org

Calculating Safety Stock: Time Period and Fixed Order

Time period method

Fixed order method

- Time Period Safety Stock = Forecast Monthly Usage × Safety Stock Time Period
- Example: 50 Units × 0.5 Months = 25 Units
- Used when parts are transitioning into or out of the system and special oversight is required

Topic 3: Safety Stock and Safety Lead Time

Adjusting Safety Stock Due to Lead Time Change

 $= 45 \times 0.91 = 41$ Units

- More room for variability in longer lead times
- Approximation rather than recalculating MAD or SD for multiple products (e.g., 45 units for 90% service, 6-week lead time currently):

New Safety Stock = Old Safety Stock ×
$$\sqrt{\frac{\text{New Lead Time}}{\text{Old Lead Time}}}$$

5 Weeks = $45 \times \sqrt{\frac{5}{6}}$
= $45 \times \sqrt{0.83}$
7 Weeks = $45 \times \sqrt{\frac{7}{6}}$
= $45 \times \sqrt{1.17}$

 $= 45 \times 1.08 = 49$ Units

Safety Lead Time

- Protection from lead time fluctuations: order early
- MRP: firm planned order
- When used for independent demand ordering systems:
 - Temporary spike in inventory that resolves itself
 - Preferred over safety stock for sporadic demand items
 - If implemented incorrectly, supply partners see as regular ordering time and order early too (like bullwhip effect)

Topic 3: Safety Stock and Safety Lead Time

Calculation of Safety Stock for Target Service Level		outs: 5 per onth period		
0-month demand: 10,000 units Order quantity: 100 units	MAD:	160 units		
Step 1: Number of orders per 10-month period]		
Number of orders per 10 months = $\frac{10,000}{100}$ = 100 c	orders			
100 100 0		Customer	Safety	Factor
Step 2: Target service level		Service Level	With SD or RMSE	With MAD
5 stockouts per 100 orders = 95 orders with no stocko	outs	50.00	0.00	0.00
$= \frac{100-5}{100} = .95$ or 9	95%	90.00	1.28	1.60
100		95.00	1.65	2.06
Step 3: Safety stock level		97.00	1.88	2.35
= 2.06 × 160 units = 330 units		Source: www.supplychai	inchannel.org	

Topic 3: Safety Stock and Safety Lead Time

Safety Stock Calculation Exercise

- Calculate the safety stock for a 95% service level. The standard deviation (σ) of the forecast interval distribution is 211 units.
- Safety stock = σ × SF

Safety stock = 211 × 1.65 = 348

Standard deviation (σ) safety factors						
Service level percent	Stockout probability percent	σ safety factors (Z value)				
95	5	1.65				
96	4	1.75				
97	3	1.88				
98	2	2.05				
99	1	2.33				
99.86 .14 3.0						
99.99	.01	4.0				

What kinds of criteria would you use to consider moving to a 99% service level?

Special Inventory and Dangerous Goods

- High-security goods
- Perishable goods
- Temperature-controlled goods
- Hazardous or dangerous goods
- Remanufacturing industry inventories for maintenance, repair, and overhaul (MRO)
- Maintenance, repair, and operating (MRO) supplies

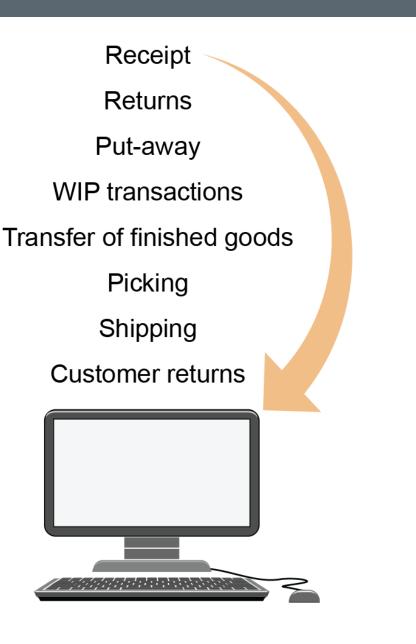
Class	Dangerous Goods
1	Explosives
2	Gases
3	Flammable liquids
4	Flammable solids
5	Oxidizing substances
6	Toxic substances
7	Radioactive material
8	Corrosive substances
9	Miscellaneous dangerous goods

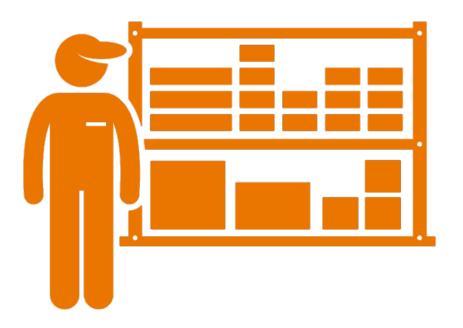
Source: Adapted from the U.S. Federal Motor Carrier Safety Administration.

SECTION D: INVENTORY CONTROL

Section D Overview

Section D Learning Objectives


- Transaction management
- Storage layout and materials handling
- Inventory record inaccuracy and shrinkage
- Periodic and cycle counting approaches
- Methods of identifying and tracing inventory
- Product recall guidelines


Topic 1: Inventory Storage, Flow, and Handling

Transaction Management

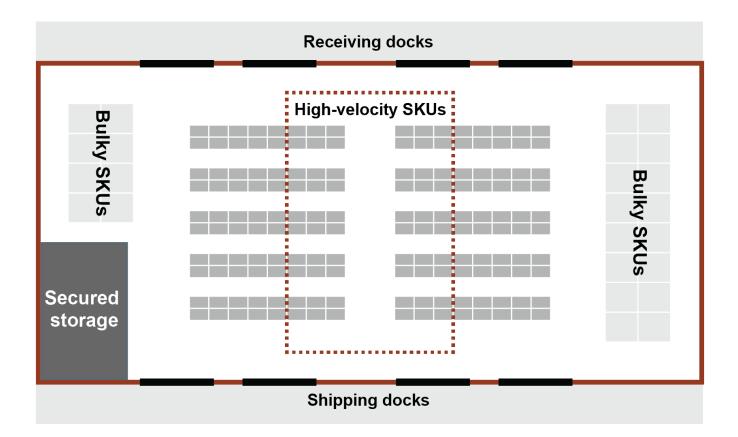
- Find all possible transaction points.
- Improve process design.
- Communicate goals and deliver training.
- Improve technology.

Inventory Storage

Challenges

- Capacity utilization
 - Efficient rack and shelf systems
- Protection of inventory from damage or theft
 - Designated areas for vulnerable stock
- Balancing accessibility with control
 - Centralized or decentralized location

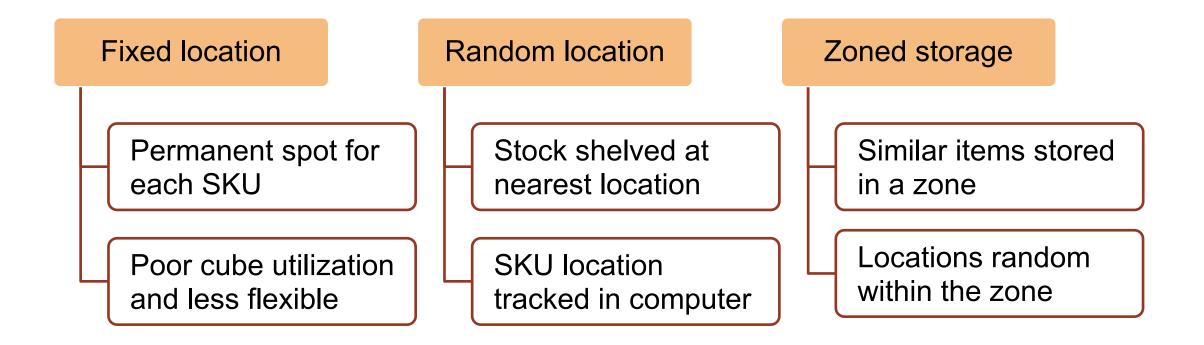
Topic 1: Inventory Storage, Flow, and Handling


Warehouse Layout Principles

Items are grouped by

- Function
- Turnover rate
- Common storage needs
- Working vs.
 reserve stock

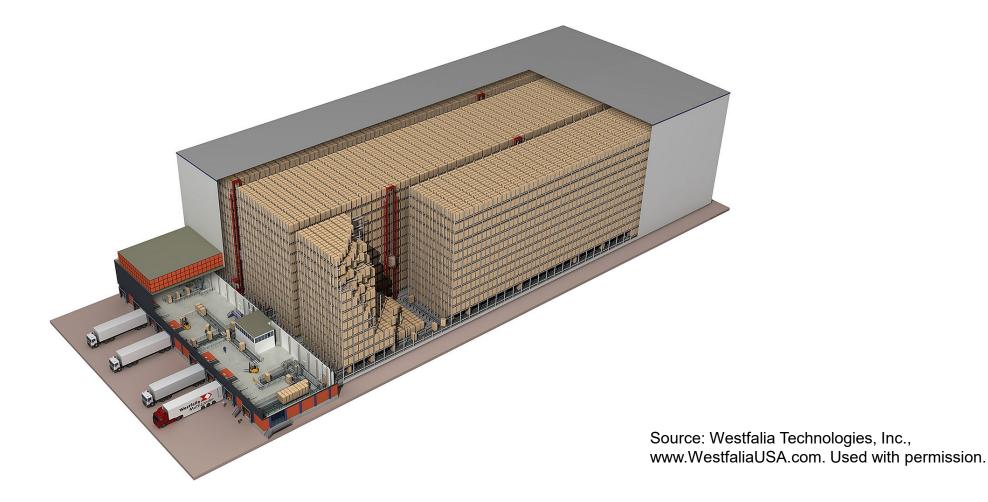
Layouts


Equipment requirements

Topic 1: Inventory Storage, Flow, and Handling

Warehouse Layout Principles

1 PICS


Inventory Location Analysis Exercise

Row #	Advantages and other important characteristics	Location type
1	Items always are in the same place; easy to learn locations.	F
2	Represents the most efficient use of storage space.	R
3	The location strategy is easy to grasp and understand.	F
4	Facilitates picking orders on a first-in, first-out basis as needed due to potential spoilage/corrosion.	R
5	Accommodates flammable or hazardous materials.	Z
6	Accommodates overflow materials easily.	R
7	Results in a high percentage of unused bin space.	F
8	Material does not have to fit in pre-assigned location.	R
9	Bin locations can be assigned to facilitate the picking of materials.	F
10	Quantity variations can be handled by storing material in more than one bin.	R
11	Allows for smaller bins and less wasted space.	R
12	Most-often-picked items can be stored where they are easiest to pick.	F
13	Changes to the variety of items being stocked can be readily accommodated.	R
14	Requires highest level of tracking and retrieval technology.	R
15	Accommodates outdoor storage.	Ζ
16	Lot or batch identity can be easily maintained.	R

Topic 1: Inventory Storage, Flow, and Handling

Automated Storage and Retrieval Systems (AS/RS)

Alternative Approaches to Managing Inventory

Rapid replenishment	 Supplier uses customer point-of-sale data to align its own production schedule. Orders still used, but lead time decreases.
Continuous replenishment	 Supplier tracks and replenishes inventory to agreed level without orders. Supplier uses customer's demand patterns to lower its inventory level.
Vendor-managed inventory	 Vendor creates item inventory policy based on shared demand data. Vendor is responsible for tracking and replenishing stock without orders.
Consignment	 Vendor holds inventory at supplier and charges only at time of use/sale.

Topic 1: Inventory Storage, Flow, and Handling

Alternative Inventory Management Requirements

- Trust between customer and vendor
- Aligned business processes
- Good communication policies
- Clear service level agreements
- E-commerce capability

Topic 2: Inventory Accuracy

Item Records

- Information that must be accurate
 - Part number and description
 - -Quantity
 - -Location
- Tolerance limits for accuracy

Causes for inaccurate records

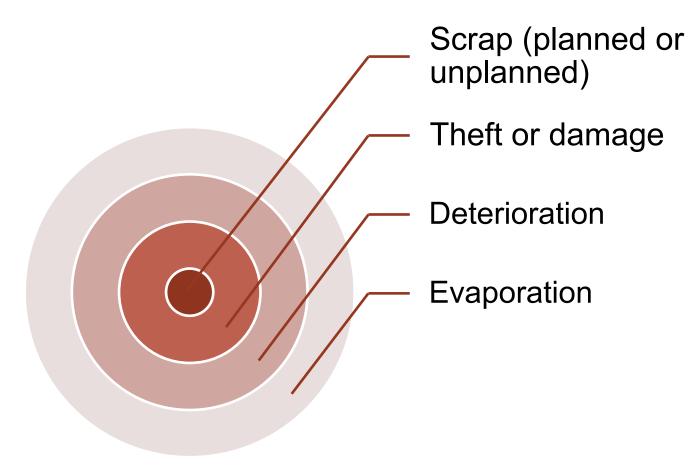
- Employee and BOM errors
- Poorly designed forms and automated/manual tools
- Inadequate training on how to make and document withdrawals

Costs of Inaccuracy

Costs of inaccuracy

- Lost sales
- Excess production
- Low productivity
- Backorders
- Excessive expediting
- High inventory levels
- Shortages
- Missed schedules
- Late delivery
- Excess freight costs
- High levels of obsolescence

Identify Item Data Exercise


Part #	Description	Unit of measure	Order policy	Order quantity	Source code	ABC code	Lead time	Standard cost
10564	gear housing	EA	FOQ	50	Μ	В	3	108.44
Prime location	Drawing	Revision	Planner/ buyer	Last cycle	Last r <u>eceipt</u>	Last issue	YTD usage	MTD usage
12C3	10564B	F1	D	03/22	04/01	04/06	190	23
<u>On hand</u> 17	Allocations	Available	On e <u>order</u> 22	Safety stock 0	Scrap factor .10			
Transaction history:								

Date	Reference	Initials	Receipts	lssues	Adjust	Stores	Location	Balance
03/13	M1056	VXS	49			S2	(12C3)	52
03/20	A357	MOM		15		S2	12C3	37
03/22	C87	REC			(-1)	S2	12C3	36
03/27	A412	MOM		22		S2	12C3	14
04/01	M1103	VXS	(26)			S2	12C3	40
04/06	A415	MOM		23		S2	12C3	17

Topic 2: Inventory Accuracy

Causes for Inventory Shrinkage

Inventory Audits

Periodic inventory

- All items are tagged and counted at one time.
- Requires many trained personnel.
- Requires shutting down operations for the duration.
- Needs a cutoff policy.

Cycle counting

- Items are counted on a predetermined schedule.
- Smaller auditing team.
- Less disruptive.
- Less subject to human error.
- Supports continuous improvement of process.
- Needs a cutoff policy.

Cycle Counting

- Count A items most times, B less, C least
- Category change: high street value; long lead time
- Fast- or slow-moving may be criteria for this ABC
- Count efficiently: at or near zero; as shipment arrives

Number of			Number of		
ABC	Items to	Annual	Counts per	Percent of	Daily
Class	Count	Frequency	Year	Total Counts	Counts
А	800	12	9,600	42.5%	38
В	2,000	4	8,000	35.4%	32
С	5,000	1	5,000	22.1%	20
		SUM	22,600	100.0%	90
N	/anufacturing	Calendar Days	251		

Total Counts and Counts Per Day Exercise

Classification	Number of items	Count frequency	Number of counts
A	1,100	12	13,200
В	1,650	4	6,600
С	2,250	2	4,500
Total counts	24,300		
Workdays per year	250		
Counts per day	98		

Topic 3: Inventory Traceability

Traceability Requirements

Inventory ID and documentation

- Products, cartons, pallets, etc.
- Class, batch/lot, instance

Transportation documentation

- Certificate of origin/manufacture
- Shipper's export declaration

Adherence to traceability standards

Examples: ISO and GS1 standards

Adherence to product recall guidelines

Specific to jurisdiction

Topic 3: Inventory Traceability

Providing Order Visibility

Tracking in-transit inventory

- Track by purchase orders, SKUs, etc.
- Customize to need by specific role
- Access by buyers and suppliers via batch process or blockchain

Advance ship notice (ASN)

- Allows buyer time to prepare for receipt and plan deployment of contents
- Reduces uncertainty in order replenishments

