# CERTIFIED IN PLANNING AND INVENTORY MANAGEMENT

**MODULE 3: DEMAND** 





### Module 3 Overview

### **Demand**

- Section A: Demand Management
- Section B: Sources of Demand/Forecasting
- Section C: Forecast Performance

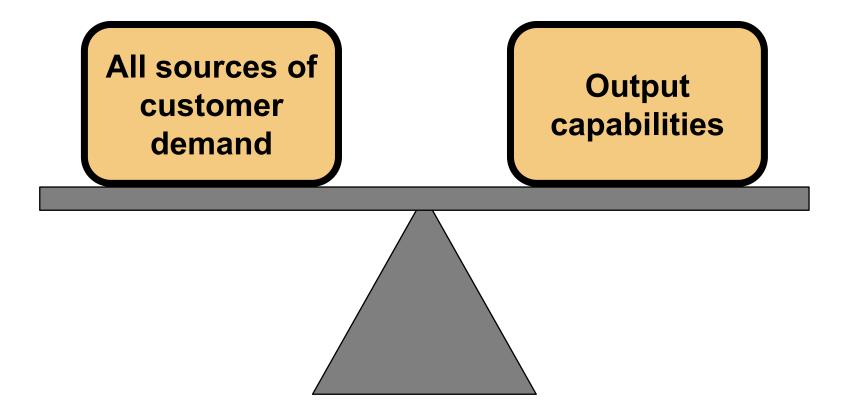


# CERTIFIED IN PLANNING AND INVENTORY MANAGEMENT

### SECTION A: DEMAND MANAGEMENT

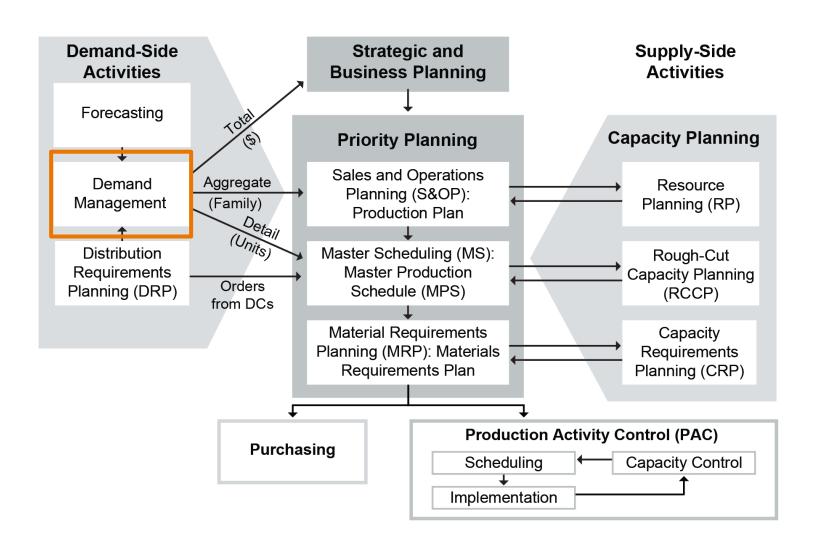





### Section A Overview

### Section A Learning Objectives

- Demand-side activities in MPC
- Demand planning: planning, communicating, influencing, and prioritizing demand
- Principles of and inputs to demand management
- Seven "rights"
- Customer relationship management
- Setting customer service policies, safety stock levels, and performance targets
- Measuring order delivery performance
- Influencing demand to align with supply
- Marketing promotions and promotion life cycle
- Quality function deployment, voice of the customer, concurrent engineering, modular design, design for manufacturability/maintainability
- Product configuration and changes




### S&OP and Master Scheduling Balance Demand





Demand Management in Manufacturing Planning and Control





## **Demand Management Activities**

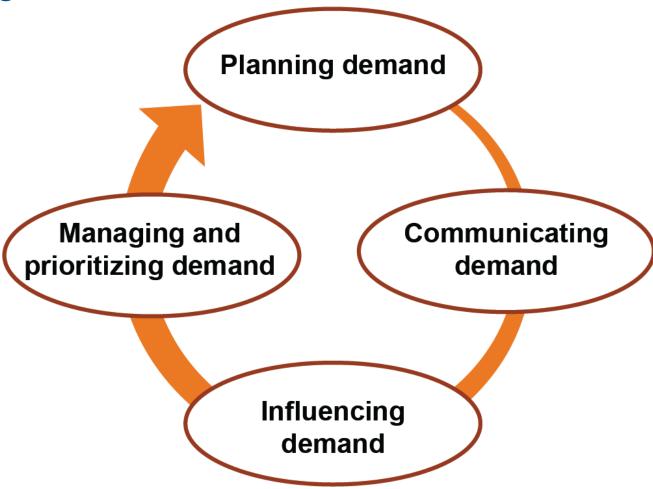
- Forecasting
  - Identifying market trends and patterns
- Identifying and reconciling demand sources
  - Customer segments
  - Unmet demands
  - Special requests
  - Items with erratic demand

- Distinguishing
  - Forecast versus manufacturing plans
  - Independent versus dependent demand
- New products/features
- Customer service levels and safety stock
- Order entry
- Communications



## Data Reliability

### Forecasts are


- Not accurate (prediction)
- More on target the larger the group measured
- Best when used with a forecast error measuring technique
- More accurate the shorter the time period.

## Inputs, calculations, and outputs checked for

- Errors in inputs, e.g., mixed units of measure, gaps, or exceeding minimum or maximum values
- Calculation errors: wrong formula or formula errors
- Unusual or unexpected trends needing investigation



**Demand Management Process** 





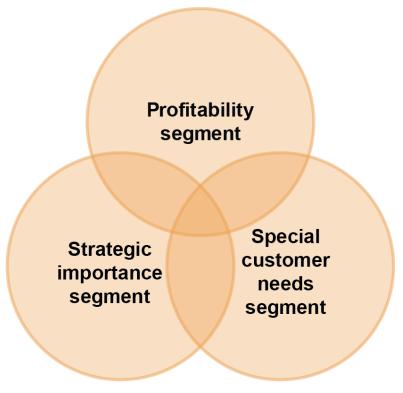
## Topic 2: Customer Relationship Management

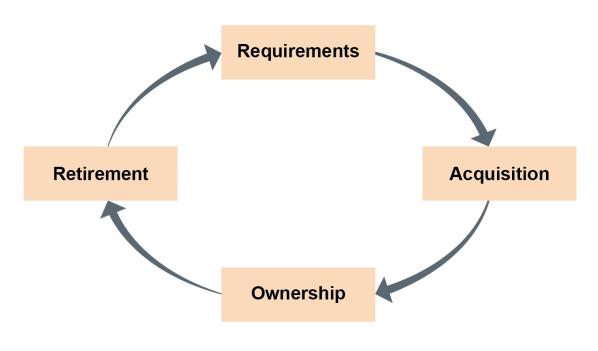
## The "Rights" of Customer Service

- The customer is always right.
- Customer-oriented organizations balance
  - Customer needs and wants
  - Organization's strategic and business objectives.

The seven "rights" of customer service

- Right customers
- Right goods and services
- Right price
- Right quality
- Right quantity
- Right time
- Right place





## Topic 2: Customer Relationship Management

### CRM: Philosophy of Putting the Customer First

### Criteria for customer segmentation

### **Customer service life cycle**







## Topic 2: Customer Relationship Management

### **Defining Customers and Product-Service Parameters**

### Which customer segments?

- Industrial
- Consumer
  - Market segments
- Institutional
- Government

#### How will we reach them?

Sales channels

### What products/services?

- Product positioning
- Number of lines
- Price/market share/profit
- Quality
- Brand name or generic
- Packaging
- Returns policy

Manufacturing environment, process type, and layout choices

Product and service design



### **Customer Service**

| Cycle Steps             | Examples of Key Activities                                                                                                                                                                                                                                         |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Customer inquiry, order | Request price and availability.                                                                                                                                                                                                                                    |  |
| Order entry             | <ul> <li>Check price and inventory available-to-promise.</li> <li>Configure as necessary.</li> <li>Promise and send order confirmation to customer.</li> <li>Create sales order in system.</li> <li>Reserve or allocate items to specific sales orders.</li> </ul> |  |
| Shipping and delivery   | <ul> <li>Consolidate and route shipments.</li> <li>Prepare pick lists.</li> <li>Prepare bills of lading and packing slips.</li> <li>Send advance ship notices.</li> </ul>                                                                                          |  |
| Invoicing               | <ul><li>Prepare invoices.</li><li>Transmit electronically or by other means.</li></ul>                                                                                                                                                                             |  |



### **Order Promising**

### **Available-to-promise (ATP)**

Response to customer order inquiries

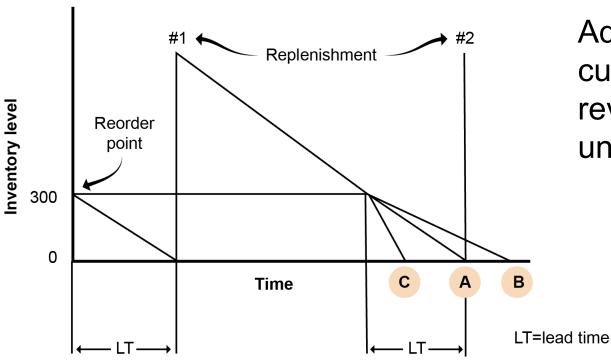
### Capable-to-promise (CTP)

- Committing orders against available capacity and inventory
- Multiple supply sites
- Uses finite scheduling model
- Considers constraints
- Less expediting needed

### **Abnormal demand**

 Demand in any period that is outside the limits established by management policy




### **Customer Service Policies**

- Customer focus
- Service levels
- Performance measurement
- Systems support

- Customer interface
- Culture
- Top management support
- Integration with strategic goals



## Safety Stock



Additional inventory to prevent customer dissatisfaction and loss of revenue caused by demand and supply uncertainty

Point A: Zero inventory level is reached at replenishment; no stockout.

Point B: Zero inventory level is not reached before replenishment occurs; no stockout.

Point C: Zero inventory level is reached before replenishment; stockout!



### **Internal Communications**

## Communication among processes/subprocesses

- S&OP
- CRM
- Master scheduling
- Demand management
- Order management
- Order visibility

### **Patterns and preferences**

- Purchasing patterns
- Shipping preferences

### Visibility data sources

- Transaction records
- Sales representatives
- Field service representatives
- Market intelligence



## Differences in Communications by Environment

|           | MTO/ETO                                 | ATO                                     | MTS                          |
|-----------|-----------------------------------------|-----------------------------------------|------------------------------|
| S&OP      | Engineering detail and demand forecasts | Product family mix and demand forecasts | Demand forecasts             |
| MPS       | Final configurations                    | Actual demand and mix forecasts         | Actual demand                |
| Customers | Delivery date and design status         | Delivery date and configuration issues  | Next inventory replenishment |



### **Topic 4: Customer Metrics**

### **Customer Value and Service Metrics**

### Satisfaction rankings

 Most common tool used to measure customer satisfaction is surveys.

### Lifetime customer value

- Decrease marketing cost.
- Easier to satisfy over time.
- Opportunity for additional revenue and profit.

### Service levels by segment

 Level of service and organizational commitment to attaining that level varies by segment.



### Topic 4: Customer Metrics

## Order Delivery Performance Metrics

### Additional metrics

- Manufacturing or retail environment impact on delivery performance
- Cash-to-cash cycle time
- Return on supply chain fixed assets

| Attribute      | Metrics                                                                                                                                                                  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reliability    | <ul> <li>Perfect order fulfillment</li> <li>Delivered on time</li> <li>Delivered in full</li> <li>Correct condition</li> <li>Correct place</li> </ul>                    |
| Responsiveness | <ul> <li>Order fulfillment cycle time</li> <li>Order entry time</li> <li>Dwell time for future dated orders</li> <li>Make, distribute, transport time</li> </ul>         |
| Agility        | <ul> <li>Upside supply chain flexibility</li> <li>Upside supply chain adaptability</li> <li>Downside supply chain adaptability</li> <li>Overall value at risk</li> </ul> |
| Cost           | <ul><li>Supply chain management cost</li><li>Total cost to serve</li></ul>                                                                                               |

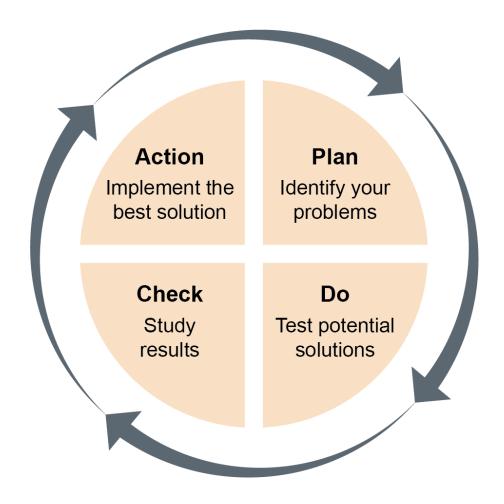


## Using PDCA for Planning and Influencing Demand

### Plan

 Develop budget, schedule, tasks, and targets.

#### Do


Launch, manage, and retire products.

#### Check

Review and analyze performance.

#### Action

- Address variances, replan.





## **Prioritizing Demand**

Promote substitutions.

Convince customers to delay purchases.

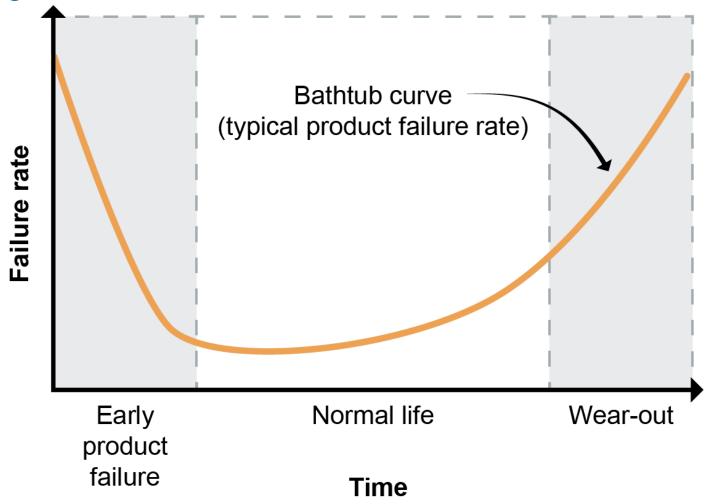
Time promotions to periods of excess production capacity.

Be mindful of effects of changes to product lines.



### Influencing Product Designs

## Quality function deployment


- Capture the voice of the customer.
- Use multidisciplinary teams.
- Improve planning.

## Participative design/engineering (concurrent engineering)

- Meet internal/external customer needs.
- Consider all inputs together for fewer product/process design changes.
- Compress time from concept to introduction.
- Prevent quality and reliability problems.
- Reduce cost.



### **Bathtub Curve**





### Design for Manufacturability and Maintainability

### Tradeoffs

- Reliability vs. maintainability
- Modular vs. nonmodular construction
- Repair vs. disposal
- Built-in vs. external test equipment
- Person vs. machine





## Identifying Engineering Changes

| Type of Change         | Product Issue/Reason for Change                                                                                                      | Action Required                                                                                                                                                                            |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mandatory              | <ul><li>Failure to function</li><li>Safety issue</li><li>Legal compliance</li></ul>                                                  | <ul><li>Immediate</li><li>Engineering change notice</li><li>Design review board process</li></ul>                                                                                          |
| Phased-in/<br>optional | <ul> <li>Product improvement or correction</li> <li>Customer request</li> <li>Cost reduction</li> <li>Process improvement</li> </ul> | <ul> <li>Phase-out or modification of existing products</li> <li>Review of options for effectivity date</li> <li>Engineering change notice</li> <li>Design review board process</li> </ul> |

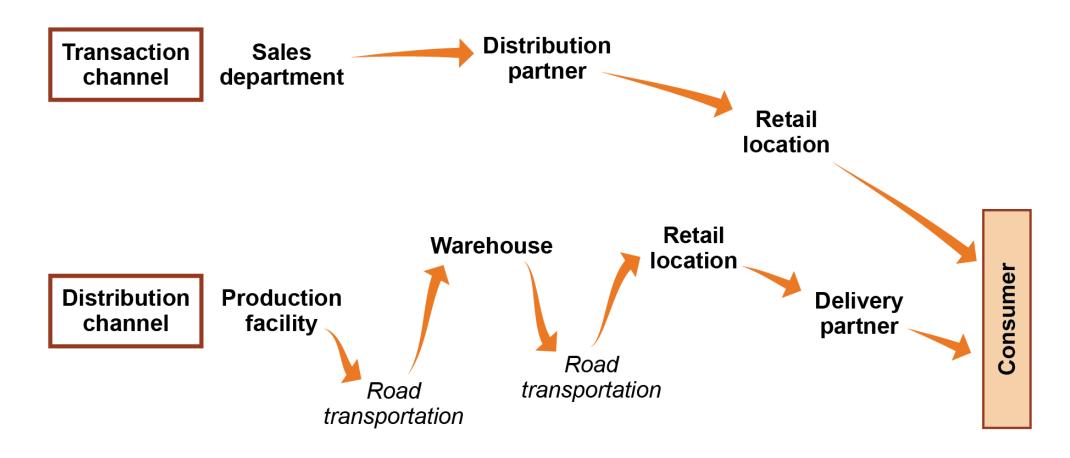


# CP I CERTIFIED IN PLANNING AND INVENTORY MANAGEMENT

SECTION B: SOURCES OF DEMAND/ FORECASTING

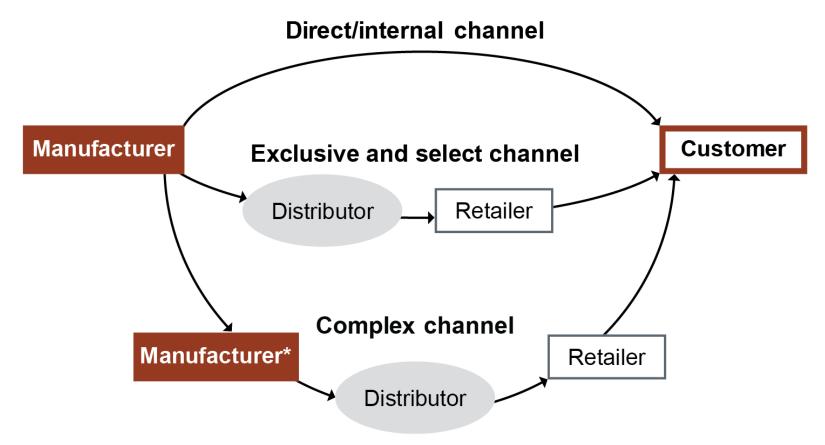





### Section B Overview

### Section B Learning Objectives

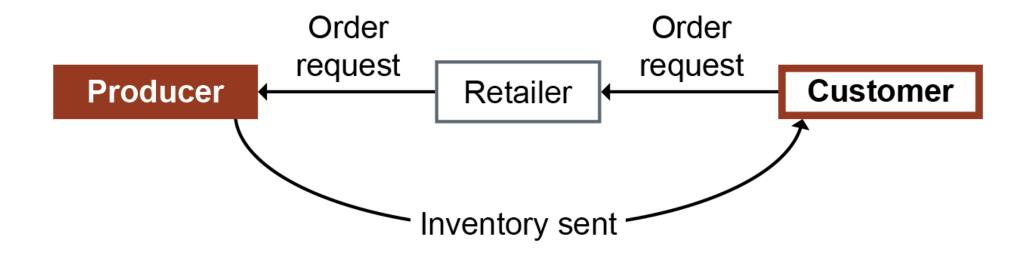
- Sources of demand in master scheduling, including B2B and B2C
- Direct/internal; exclusive and select; and complex distribution channels
- Dependent and independent demand
- Key forecasting principles
- Forecast horizon and interval
- Forecasting process
- Qualitative and quantitative (extrinsic and intrinsic) forecasting methods
- Forecasting method pros and cons and selection criteria




### Distribution and Transaction Channels






### **Distribution Channels**

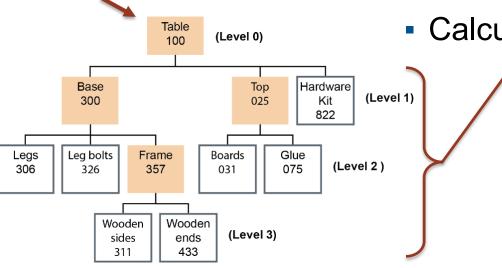


<sup>\*</sup> Regional distribution centers owned by manufacturer



### Producer Storage with Drop Ship






### Dependent versus Independent Demand

### Independent

 Demand for an item unrelated to the demand for other items

Forecasted



### Dependent

- Demand that is directly related to or derived from bill-of-material structure for other items or end products
- Calculated, not forecasted



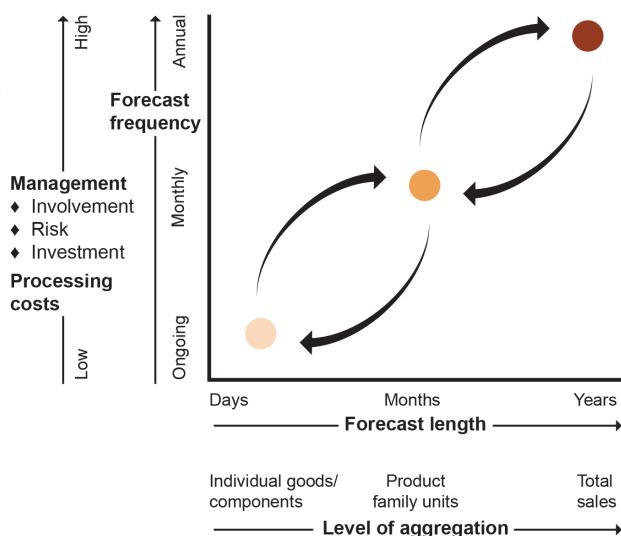
### Item Forecasts: Sources of Forecast Data

| Source               | Demand Inputs                                                                                                                                                                                                                                                                                   |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demand<br>management | <ul> <li>Channel family-level forecasts disaggregated to mix level, then end-item level at lowest level stocking points.</li> <li>Item forecasts for lowest level stocking points (using time series analysis, etc.) rolled up regionally to systemwide total for master scheduling.</li> </ul> |
| Sales                | <ul> <li>Sales force estimates for inventory storage locations.</li> <li>Replenishment needs for vendor-managed inventory.</li> </ul>                                                                                                                                                           |
| Marketing            | <ul> <li>Promotions that will cause demand spikes.</li> </ul>                                                                                                                                                                                                                                   |
| CRM                  | <ul> <li>Customer orders pending release to supplier.</li> <li>Changes in ordering patterns.</li> </ul>                                                                                                                                                                                         |
| DCs and customers    | <ul> <li>Reports of special events that will cause demand spikes.</li> <li>Recent anomalous purchases.</li> </ul>                                                                                                                                                                               |



## Topic 2: Forecasting Road Map and Selection

## Forecasting Principles


- Forecasts are wrong most of the time.
- Forecast not complete without reliability/error metrics.
- Avoid forecasting: Use actual demand if able. Actual demand:
  - "Composed of customer orders (and often allocations of items, ingredients, or raw materials to production or distribution)."
  - Consumes the forecast.

- Aggregate demand to degree possible. Can aggregate:
  - Products (families)
  - Geographic areas
  - Time.
- Forecasts are more accurate in near term than long term.
- Match type to need:
  - Simpler is better.
  - Monitor routinely for appropriateness and quality.



### Topic 2: Forecasting Road Map and Selection

## Creating and Using a Forecast





#### Strategic planning

Forecasting techniques

- Management judgment
- Economic growth models
- ♦ Regression

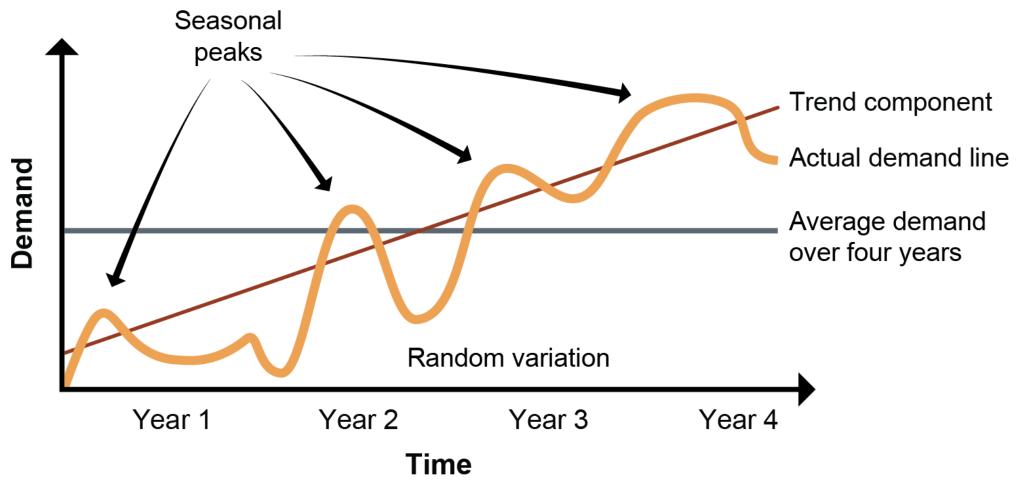


#### S&OP

Forecasting techniques

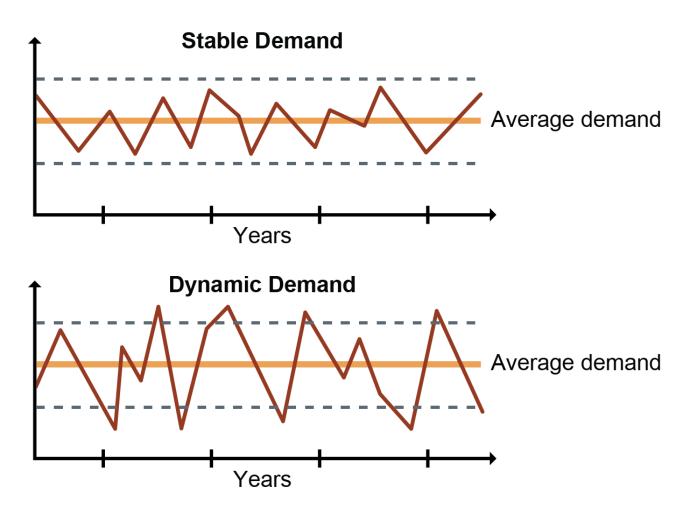
- Aggregation of detailed forecasts
- Customer plans
- ♦ Regression

## Master production scheduling & control


Forecasting techniques

- Moving averages
- Exponential smoothing




### Topic 2: Forecasting Road Map and Selection

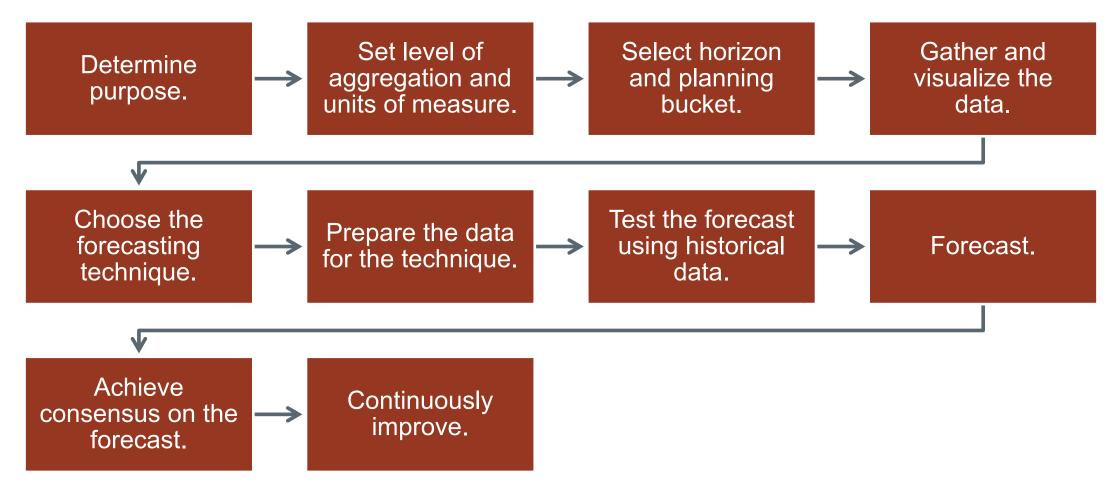
### **Demand Patterns**





#### Stable versus Dynamic Demand






#### Demand Variation by Environment

| Environment | Types of Uncertainty Requiring Forecasting                                                                                   |
|-------------|------------------------------------------------------------------------------------------------------------------------------|
| MTS         | Variations in demand stated in forecasts for each inventory location                                                         |
| ATO         | Variations in quantity, customer order timing, and product mix                                                               |
| MTO         | Size of the backlog and the level of company resources needed to finish the engineering and make products per specifications |
| ETO         | Hiring difficult-to-find design engineers and ordering materials with long lead times                                        |



#### Forecasting Process





#### Data Collection and Preparation Principles

- Forecast based on demand, not orders. Estimate demand from net sales, backorders, and requests that had to be turned away and/or filled from other plants.
- Collect data in needed format.
- Record related circumstances.
- Separate demand by customer segment.

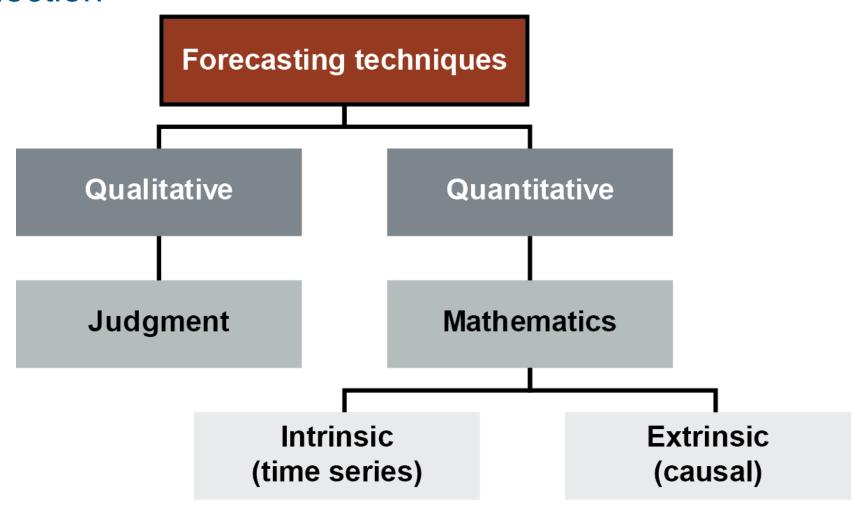
| Month     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | SUM    |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Segment A |       |       | 6,000 |       |       |       |       |       | 6,000 |       |       |       | 12,000 |
| Segment B | 478   | 470   | 440   | 360   | 330   | 290   | 260   | 200   | 160   | 190   | 280   | 420   | 3,878  |
| B avg.    | 323   | 323   | 323   | 323   | 323   | 323   | 323   | 323   | 323   | 323   | 323   | 323   |        |
| A+B avg.  | 1,323 | 1,323 | 1,323 | 1,323 | 1,323 | 1,323 | 1,323 | 1,323 | 1,323 | 1,323 | 1,323 | 1,323 |        |



## Information Needs by Environment

All manufacturing environments require sharing the forecast and other data among various functions, including sales and operations planning (S&OP), master scheduling (MS), and their customers.

- MTS uses forecasts for S&OP and actual demand for the master production schedule (MPS).
- ATO will use product family mix for S&OP and mix forecasts and actual demand for the MPS.
- MTO will need engineering detail for S&OP but final configuration for the MPS.
- ETO may use similar products with focus on engineering hours for S&OP and the MPS.




## Forecast Audiences by Planning Level

| Audience                           | Use                                                                                                                                  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Business planning                  | <ul> <li>Set a direction.</li> <li>Plan product expansions and introductions.</li> <li>Evaluate strategic growth options.</li> </ul> |
| S&OP                               | <ul> <li>Reconcile functional plans with planned output.</li> </ul>                                                                  |
| Master planning and scheduling     | <ul> <li>Determine the number and timing of finished products.</li> <li>Provide input into rough-cut capacity plan.</li> </ul>       |
| Distribution requirements planning | <ul> <li>Plan inventory levels at DCs and inventory replenishment<br/>schedules.</li> </ul>                                          |



#### **Forecast Selection**



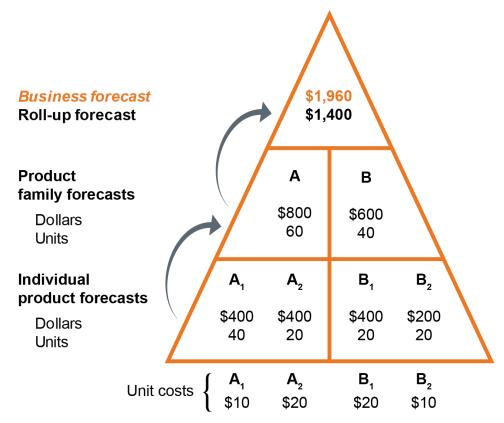


Complete Variables Affecting Selection of Forecasting Econometric Method Multiple regression Simple regression Unstable Stable Time series Historical Naive decomposition analogy Delphi method Exponential Simple smoothing Judgment/expert moving opinion average Weighted Simple moving moving average average Incomplete



#### **Qualitative Forecasting Methods**

- Subjective approach based on intuitive or judgmental evaluation.
- Used when data is scarce, not available, or no longer relevant.
- May modify a quantitative forecast.
- Qualitative techniques:
  - Historical analogy (e.g., similar product)
  - Judgmental/expert opinion: experts forecast or modify quantitative forecast
  - Delphi method
  - Pyramid forecasting: hybrid of qualitative and quantitative




#### **Qualitative Forecasting Methods**

#### **Delphi** method

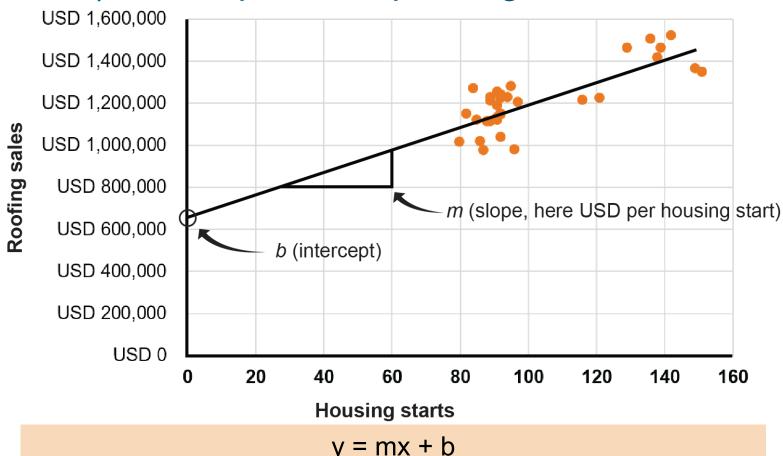
- Combines the opinions of experts in a series of iterations, each iteration being used to develop the next.
- Anonymity is maintained to avoid groupthink or "stake in the ground" mentality.

#### **Pyramid forecasting**





#### **Quantitative Forecasting Techniques**


Approach where historical demand data is used to project future demand.

# Quantitative techniques:

- Extrinsic (causal)
- Intrinsic (time series)



#### Extrinsic (Causal) Techniques: Simple Regression



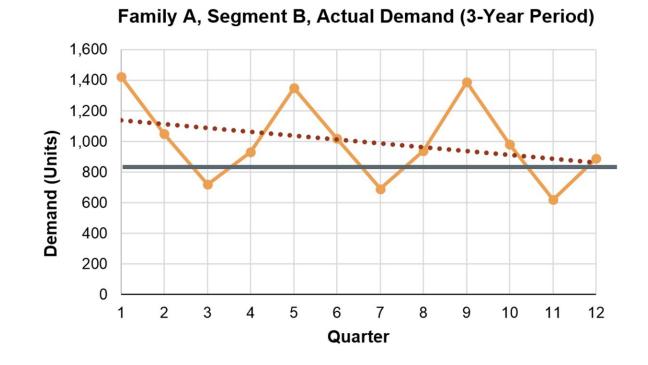
y = mx + bRoofing Sales = (m × Prior Month's Housing Starts) + b




#### Quantitative Methods: Intrinsic (Time Series) Forecasting

- Near-term past is good guide to near-term future.
  - True in current business environment?
- To deseasonalize, divide by period's seasonal index.
- After forecasting, multiply by seasonal index.
- Short- or medium-term: Get period's actuals; use for next period's forecast.
- All lag changes in trend and smooth out random variation.
  - Methods that make one factor better make the other factor worse.




#### Time Series Techniques: Visualizing





#### Seasonality: Deseasonalization and Seasonal Index

- Find period average demand, e.g., sum all Q1s and divide by number of Q1s.
- Find average demand for all periods, e.g., sum of quarterly averages divided by 4.



Seasonal Index = Period Average Demand

Average Demand for All Periods



#### **Deseasonalized Demand**

- Average is deseasonalized by definition.
- Apply seasonality: Multiply by period's seasonal index.
- Y4 forecast of 3,756 units/4 quarters = 939 units per quarter average.
- Q1 seasonal forecast = 1.387
   x 939 = 1,302 units.

|             | Act       | tual Den | nand His | story     |          |
|-------------|-----------|----------|----------|-----------|----------|
|             |           |          |          | Quarterly | Seasonal |
|             | Year 1    | Year 2   | Year 3   | Average   | Index    |
| Quarter 1   | 1,422     | 1,351    | 1,388    | 1,387     | 1.387    |
| Quarter 2   | 1,050     | 1,018    | 980      | 1,016     | 1.016    |
| Quarter 3   | 720       | 691      | 620      | 677       | 0.677    |
| Quarter 4   | 930       | 940      | 890      | 920       | 0.920    |
| Sum         | 4,122     | 4,000    | 3,878    | 4,000     | 4.000    |
| Average Dem | and (Qtr. | Avg. Sur | n/4) =   | 1,000     |          |



#### Seasonal Index Exercise

| Sales Information                                       |       |       |       |       |       |      |
|---------------------------------------------------------|-------|-------|-------|-------|-------|------|
| Quarter                                                 | 1     | 2     | 3     | 4     | Total | Avg. |
| Year 1                                                  | 30    | 600   | 1,650 | 120   | 2,400 | 600  |
| Year 2                                                  | 36    | 635   | 1,713 | 134   | 2,518 | 630  |
| Year 3                                                  | 42    | 670   | 1,788 | 150   | 2,650 | 663  |
| 3-Year Average                                          | 36    | 635   | 1,717 | 135   | 2,523 | 631  |
| Seasonal Index (3 decimal places for rounding purposes) | 0.057 | 1.007 | 2.723 | 0.214 |       |      |
| Year 4<br>(Quarterly avg. x 3-yr. index)                | 54    | 954   | 2,580 | 202   | 3,790 | 948  |

Seasonal Index = Period Average Demand

Average Demand for All Periods



#### **Moving Averages**

Moving Average =

Sum of Demand for Most Recent Set of Periods

**Number of Periods** 

Weighted Moving Average =

$$(1 \times \text{Period } 1) + (2 \times \text{Period } 2) + (3 \times \text{Period } 3)$$

Sum of Weights 
$$(1 + 2 + 3 = 6)$$



#### **Exponential Smoothing**

- Weighted average of latest period demand, forecast.
- Alpha (α) is smoothing constant between 0.0 and 1.0 (usually set from 0.0 to 0.3).
- Lower alphas lag more and smooth more.

New Forecast = (
$$\alpha \times$$
 Latest Demand) + ((1 -  $\alpha$ )  $\times$  Previous Forecast)  
New Forecast (Deseasonalized) = (0.3  $\times$  967) + (0.7  $\times$  973) = 971

| Qtr.  | Deseasonalized<br>Demand | Deseasonalized<br>Forecast | 0.3 Exp. Forecast      |
|-------|--------------------------|----------------------------|------------------------|
| Y3-Q4 | 967                      | 973                        |                        |
| Y4-Q1 |                          | 971                        | × 1.387 = <b>1,347</b> |



#### **Exponential Smoothing Forecast Exercise 1**

- Prepare an exponential smoothing forecast for June.
  - May data: actual demand = 220; forecast = 200.
  - Calculate the forecast for June using a smoothing constant ( $\alpha$ ) of 0.20.
- New forecast =  $(\alpha)$  (latest demand) +  $(1 \alpha)$  (previous forecast)

$$(0.2)$$
 220 +  $(0.8)$  200 = 44 + 160 = 204



#### **Exponential Smoothing Forecast Exercise 2**

- Prepare an exponential smoothing forecast for July.
  - June data: actual demand = 240
  - Calculate the forecast for July also using a smoothing constant ( $\alpha$ ) of 0.20.
- New forecast =  $(\alpha)$  (latest demand) +  $(1 \alpha)$  (previous forecast)

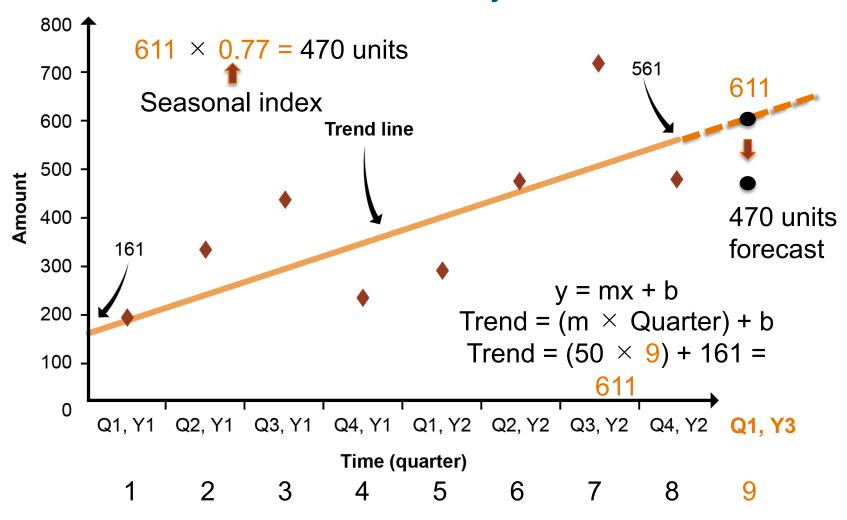
$$(0.2)$$
 240 +  $(0.8)$  204 = 48 + 163 = 211



#### Time Series Techniques: Exponential Smoothing Exercise

Demand for a new product is rising faster than forecasts based on 0.2 alpha value exponential smoothing.
 Would you recommend use of a higher or lower alpha value, and what would your forecast be for September?

| Demand   | May     | June    | July    | August  | September |
|----------|---------|---------|---------|---------|-----------|
| Forecast | 200,000 | 204,000 | 211,200 | 221,160 |           |
| Actual   | 220,000 | 240,000 | 261,000 | 275,000 |           |


 Demand for a consumer product appears to be random with low variability. Do you recommend a high, medium, or low alpha value?

| Period | 1  | 2  | 3   | 4  | 5   | 6  | 7  | 8   |
|--------|----|----|-----|----|-----|----|----|-----|
| Demand | 95 | 91 | 104 | 95 | 106 | 89 | 94 | 110 |

• If demand shows a definite declining trend, would you recommend a high, medium, or low alpha value?



#### **Decomposition: Trend and Seasonality**





# CERTIFIED IN PLANNING AND INVENTORY MANAGEMENT

SECTION C: FORECAST PERFORMANCE





#### Section C Overview

#### Section C Learning Objectives

- Evaluating forecast performance
- Benefits of forecast accuracy
- Bias versus random variation
- Mean absolute deviation (MAD) and other forecast error metrics
- Tracking signal for identifying forecasts to evaluate
- Bullwhip effect on supply chain instability
- Collaborative planning, forecasting, and replenishment (CPFR®)



#### Forecast Evaluation Road Map

#### Why track error rates

- Improve forecasts.
- Know how much reliance to place on forecast, e.g., how much safety stock?
- Detect bias.
- Get quantitative data on actual customer service level.
- See forecaster willingness to stand by results.

#### **Benefits of accuracy**

- Customer satisfaction (timely)
- Customer loyalty
- Less safety stock or safety lead time
- Understand evolving customer product demands



#### **Evaluation of Forecast Performance**

- Extrapolation
- Mean
- Median
- Mode
- Normal distribution
- Outlier
- Probability distribution
- Sample
- Sampling distribution





#### Bias Versus Random Variation

- Bias: consistent deviation from mean in one direction.
- Biased means actual and forecast diverge over time.
- Unbiased forecast error root cause = random variation.

|            |            | Bias       |                  | Random Variation |                 |                  |  |
|------------|------------|------------|------------------|------------------|-----------------|------------------|--|
| Month      | Actual     | Forecast   | <b>Deviation</b> | Actual           | <b>Forecast</b> | <b>Deviation</b> |  |
| 1          | 70         | 100        | -30              | 105              | 100             | 5                |  |
| 2          | 150        | 100        | 50               | 94               | 100             | -6               |  |
| 3          | 120        | 100        | 20               | 98               | 100             | -2               |  |
| 4          | 60         | 100        | -40              | 104              | 100             | 4                |  |
| 5          | 160        | 100        | 60               | 103              | 100             | 3                |  |
| 6          | <u>120</u> | <u>100</u> | <u>20</u>        | <u>96</u>        | <u>100</u>      | <u>-4</u>        |  |
| Cumulative | 680        | 600        | 80               | 600              | 600             | 0                |  |



#### **Deviation Versus Forecast Error**

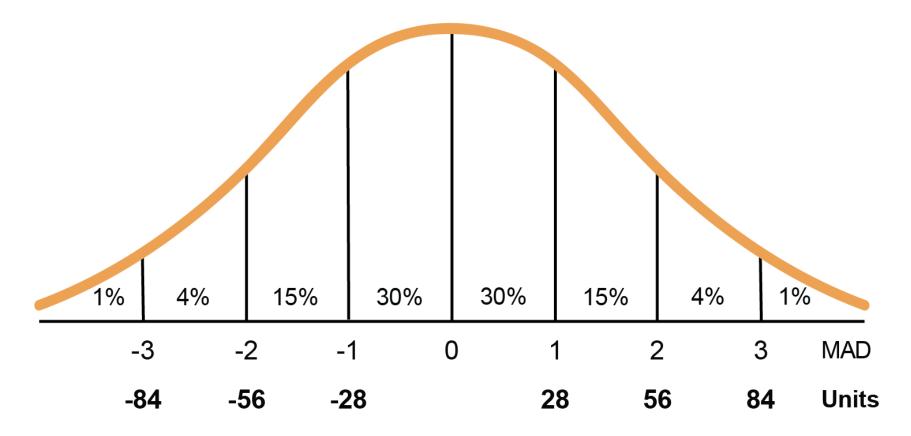
- Deviation = Actual DemandForecast.
- Plus or minus sign shows direction.
- Positive and negative deviations cancel each other out.
- Error (absolute deviation, no
   + or –) shows full impact.

| Qtr.  | Actuals | 3-Qtr.<br>Moving | Deviation | Error |
|-------|---------|------------------|-----------|-------|
| Y2-Q3 | 691     | 674              | 17        | 17    |
| Y2-Q4 | 940     | 919              | 21        | 21    |
| Y3-Q1 | 1,388   | 1,408            | -20       | 20    |
| Y3-Q2 | 980     | 1,031            | -51       | 51    |
| Y3-Q3 | 620     | 674              | -54       | 54    |
| Y3-Q4 | 890     | 884              | 6         | 6     |
|       |         | SUM              | -80       | 169   |



#### Mean Absolute Deviation

$$MAD = \frac{\sum |Actual - Forecast|}{Number of Periods}$$


MAD = 
$$\frac{(17 + 21 + 20 + 51 + 54 + 6)}{6} = \frac{169}{6} = 28 \text{ Units}$$

| Quarter | Actual<br>Demand | l        | -Qtr.<br>oving | 3-Q<br>Mov | tr.<br>ing E | Error |     |
|---------|------------------|----------|----------------|------------|--------------|-------|-----|
| Y2-Q3   | 691              | _        | 674            | =          | 17           |       |     |
| Y2-Q4   | 940              | <b> </b> | 919            | =          | 21           |       |     |
| Y3-Q1   | 1,388            | -        | 1,408          | =          | 20           |       |     |
| Y3-Q2   | 980              | -        | 1,031          | =          | 51           |       |     |
| Y3-Q3   | 620              | <b> </b> | 674            | =          | 54           | SUM:  | 169 |
| Y3-Q4   | 890              | _        | 884            | =          | 6            | MAD:  | 28  |



#### Mean Absolute Deviation

MAD in units for 3-quarter moving average forecast





#### Mean Squared Error and Mean Absolute Percentage Error

$$MSE = \frac{Sum of (Errors for Each Period)^2}{Number of Forecast Periods}$$

$$MAPE = \frac{\sum \left(\frac{|Actual - Forecast|}{Actual}\right) [\%]}{Number of Periods}$$



## **Tracking Signal**

- One-number bias assessment
- Numerator not absolute
  - Cumulative deviation
- Implement contingency plan to manage demand variations (e.g., using safety stock) and maintain customer service level

Tracking Signal = 
$$\frac{\text{Algebraic Sum of Forecast Deviations}}{\text{MAD}} = \frac{-80}{28} = -2.83^*$$



#### Standard Deviation and WAIT

#### Standard deviation

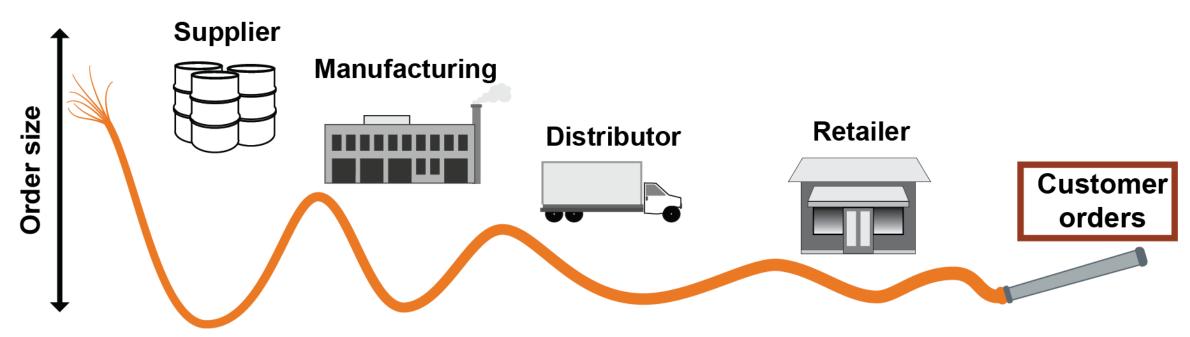
- Widely used to plan for fluctuations
- Dispersion of data around mean
  - Actual versus average (forecast error not used)
  - High variability: more safety stock

Standard Deviation =

$$\sqrt{\frac{\sum (Actual - Average)^2}{n-1}}$$

#### **WAIT** for forecast accuracy

- "Within allowable item tolerances"
- How much error is problematic?
  - "Hit" = within tolerance
  - "Miss" = outside tolerance


Forecast Accuracy = 
$$\frac{\Sigma(\text{Number of Hits})}{\Sigma(\text{Number of Hits + Number of Misses})} \times 100\%$$



#### **Supply Chain Dynamics**

#### **Bullwhip effect**

Extreme change in upstream supply position generated by small change in downstream demand





## Bullwhip Effect Example

|        | Supplier 3<br>(Plastic<br>Liners) |                 |       | lier 2<br>/ers) | Supp<br>(Mattro | olier 1<br>esses) |       | acturer<br>Cribs | Retail |
|--------|-----------------------------------|-----------------|-------|-----------------|-----------------|-------------------|-------|------------------|--------|
| Period | Prod.                             | B/E             | Prod. | B/E             | Prod.           | B/E               | Prod. | B/E              | Demand |
| 1      | 1,000                             | 1,000/<br>1,000 | 1,000 | 1,000/<br>1,000 | 1,000           | 1,000/<br>1,000   | 1,000 | 1,000/<br>1,000  | 1,000  |
| 2      | 200                               | 1,000/<br>600   | 600   | 1,000/<br>800   | 800             | 1,000/<br>900     | 900   | 1,000/<br>950    | 950    |
| 3      | 1,800                             | 600/<br>1,200   | 1,200 | 800/<br>1,000   | 1,000           | 900/<br>950       | 950   | 950/<br>950      | 950    |
| 4      | 600                               | 1,200/<br>900   | 900   | 1,000/<br>950   | 950             | 950/<br>950       | 950   | 950/<br>950      | 950    |



## Controlling the Bullwhip Effect

#### Causes

- Demand forecast updating and orders rather than demand
- Order batching
- Price fluctuation
- Rationing and gaming

#### **Focus of solutions**

- Better accuracy through shared data
- Technology and collaboration to make orders smaller and more frequent
- Agreement on promotions/less of them
- Less forecasting (e.g., DDMRP)
- Historical data to improve decisions
- Less ability to return unsold product
- Vendor-managed inventory



#### **CPFR®** Model

| Manufacturer Tasks           | Collaboration Tasks        | Retailer Tasks         |
|------------------------------|----------------------------|------------------------|
| Strategy & Planning          |                            |                        |
| Account Planning             | Collaboration Arrangement  | Vendor Management      |
| Market Planning              | Joint Business Plan        | Category Management    |
| Demand & Supply Management   |                            |                        |
| Market Data Analysis         | Sales Forecasting          | POS Forecasting        |
| Demand Planning              | Order Planning/Forecasting | Replenishment Planning |
| Execution                    |                            |                        |
| Production & Supply Planning | Order Generation           | Buying/Re-buying       |
| Logistics/Distribution       | Order Fulfillment          | Logistics/Distribution |
| Analysis                     |                            |                        |
| Execution Monitoring         | Exception Management       | Store Execution        |
| Customer Scorecard           | Performance Assessment     | Supplier Scorecard     |

