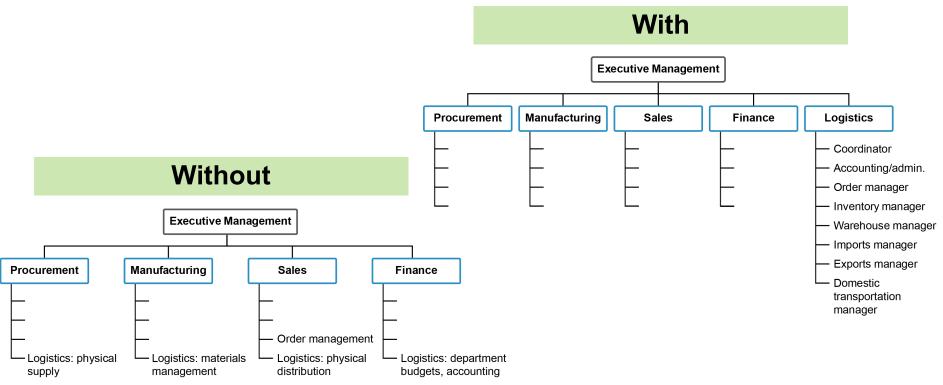

MODULE 9: LOGISTICS FRAMEWORK, METRICS, NETWORK DESIGN, TRANSFORMATION, AND IMPROVEMENT

Module 9: Logistics Framework, Metrics, Design, Transformation, Improvement

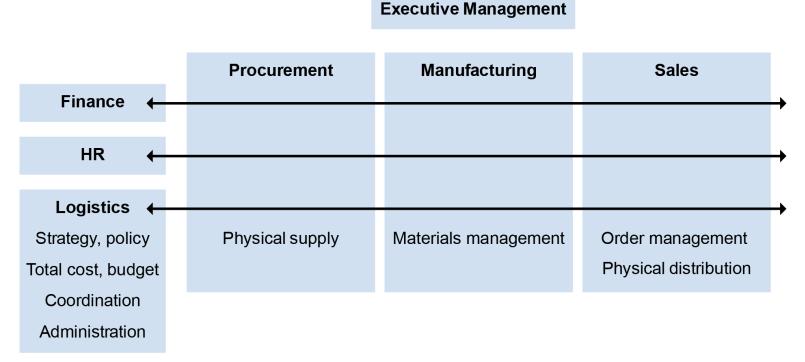
Module 9 Overview

MODULE 9, SECTION A: DESIGN THE LOGISTICS FRAMEWORK



Transformation of Structures, People, and Processes

- 1. Create the rationale and urgency for supply chain transformation.
 - Get executive support, form planning team, define problems
- 2. Prepare for supply chain transformation.
 - Scan the market, specify business drivers, optimize systems
- 3. Execute the supply chain transformation.
 - Synchronize systems, processes, people, external partners
- 4. Review the supply chain transformation.



Functional Structure without and with Logistics Area

Matrix Structure with Logistics as Cross-Functional Area

From Transactional to Linked Relationships

Transactional

Linked

Operating Arrangements: Models

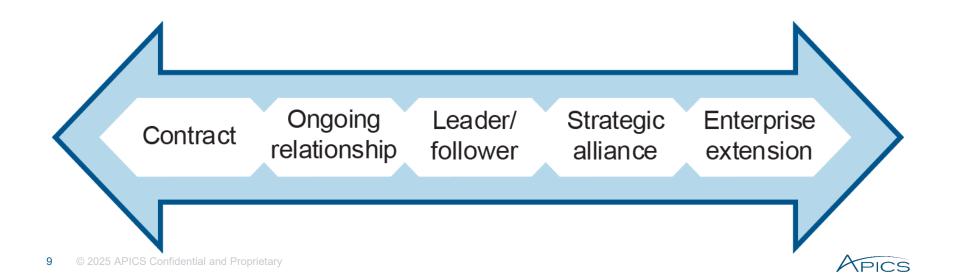
- Warehouse specialization area
- Get all right subassemblies to point of use efficiently

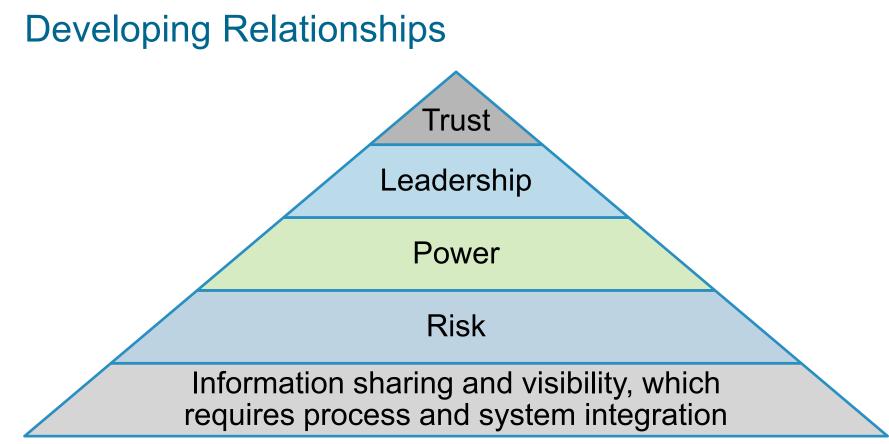
Direct

 Focus on having fewest warehouses.

Combined

 Focus on postponing movement as long as possible.


Flexible


- Customer service level: fulfill from further as needed.
- Cross-docking

Relationships Types Fall on a Spectrum

From arm's length... to collaboration or integration.

Initiating, Maintaining, and Terminating Relationships

- New and deepening relationships are at critical points.
- Invest time in analysis and project planning.
 - Less risk of failure
 - More benefits
- Maintain exit plan. Reasons for termination:
 - Unprofitable cost pressure
 - Failure to remedy service issues
 - Difference of opinions
 - Become competitors

Types of Collaboration

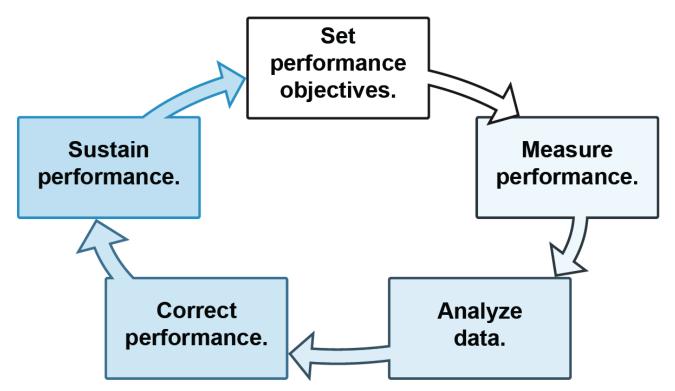
Horizontal collaboration

- Relationships between competitors or organizations doing parts of a process in parallel or sequence
- Shared logistics services through LSPs

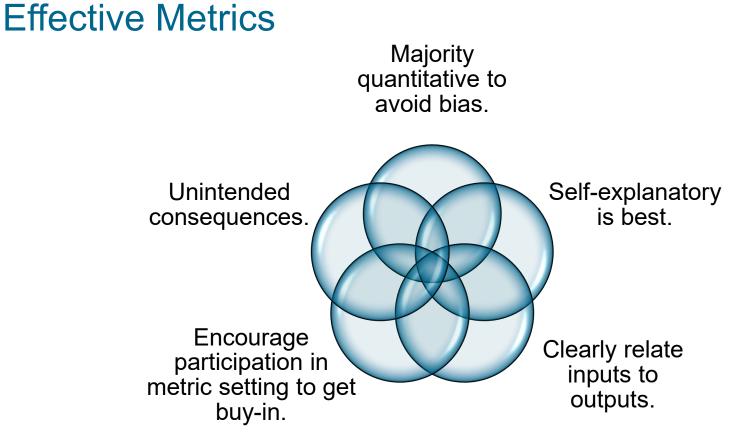
Vertical collaboration

- Quick response (QR)
- Efficient consumer response (ECR)
- Collaborative planning, forecasting, and replenishment (CPFR[®])
- Vendor-managed inventory (VMI)
- Demand-driven methodology (DDM)

MODULE 9, SECTION B: COORDINATE STRATEGIC PERFORMANCE MANAGEMENT



Uses of Performance Management


Performance Management Process

Other Ways to View Performance Objectives

Critical success factors	Value drivers	KPIs
 Results, actions, and processes that drive perceived value Focus is on customer 	 Vital few metrics Link to organizational strategic goals Functional areas jointly determine Answer question: Am I focusing on my customer's needs? 	 Measure attainment

Setting Performance Targets

Performance targets are set to equal or exceed a standard.

Sources for standards:

- Historical standards
- Predetermined or public standards
- Work sampling
- Regression: effect of variables on time or cost

Measuring and Analyzing Performance

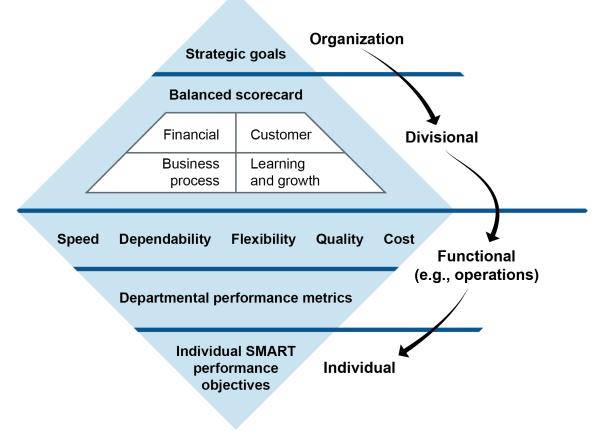
Validity and value of data are improved by standardization measures.

- Measure at same time points.
- Measure under similar conditions.
- Use tools for collection consistency and to enable drill-down.

Measuring and Analyzing Performance: Tools

Balanced scorecards

Dashboards

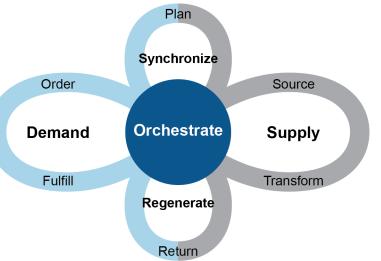

Set Key Performance Indicators (KPIs)

Key Performance Indicators (KPIs) and KPI Trees

- Measure only what is important.
- Avoid contradictory KPIs.
- Leading/lagging indicators, diagnostic metrics.
- KPI tree: Series of KPIs linked to be
 - Summary at higher levels: Contribution to shareholder value
 - More specific at lower levels: Root causes

Set Key Performance Indicators (KPIs)

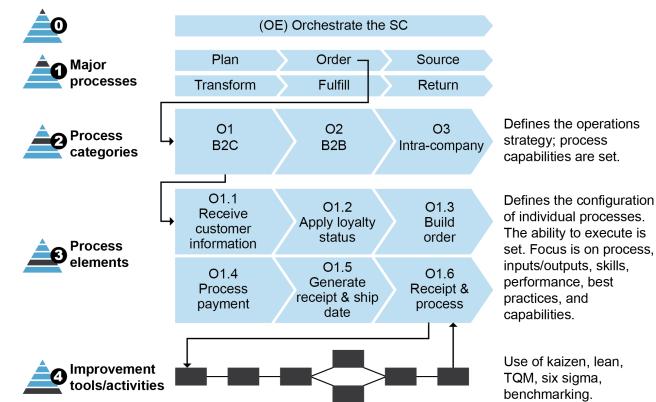
Integrated Measurement Model



SCOR DS

Source: ASCM, "Introduction to Supply Chain Management Using SCOR." Available from SCOR-DS website. Used with permission.

- Moving beyond linear supply chain depictions to supply networks
- Never-ending flow of processes with no artificial starts or ends
- scor.ascm.org



Source: Copyright ASCM. Used with permission.

SCOR DS Hierarchical Process Model

- Performance: levels 1 to 3 in KPI tree
- Level 4 is specified by organization but linked to higher levels

Source: SCOR DS. Copyright ASCM. Used with permission.

SCOR DS Four Major Sections

Performance attributes	Processes	People	Practices
 Resilience Reliability Responsiveness Agility Economic Cost Profit Assets Sustainability Environmental 	 Management process standard descriptions States As-is What-if To-be 	 Standard definitions Skills Experiences Training Competency levels 	 Unique way to configure process Pillars Analytics and technology Process Organization

Social

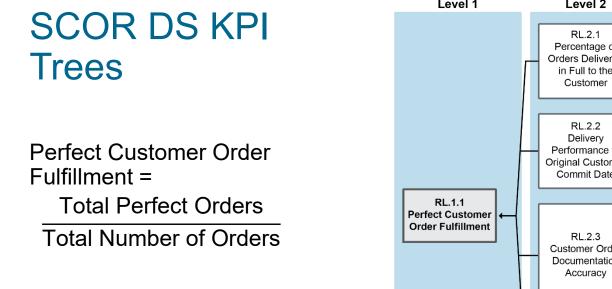
SCOR DS Resilience Performance Attributes

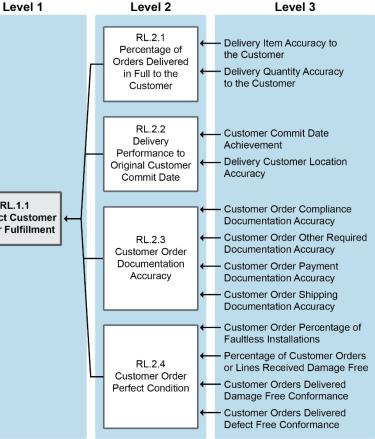
Performance Attribute	Definition
Reliability (RL)	"The ability to perform tasks as expected. Reliability focuses on the predictability of the outcome of a process. Typical metrics for the Reliability attribute include delivering a product on time, in the right quantity, and at the right quality level."
Responsiveness (RS)	"The speed at which tasks are performed and the speed at which a supply chain provides products to the customer. Examples include cycle-time metrics."
Agility (AG)	"The ability to respond to external influences and marketplace changes to gain or maintain a competitive advantage."

SCOR DS Economic Performance Attributes

Performance Attribute	Definition
Costs (CO)	"The cost of operating the supply chain processes. This includes labor costs, material costs, and management and transportation costs."
Profit (PR)	"The Profit attribute describes the financial benefit realized when the revenue generated from the business activity exceeds the expenses, costs, and taxes involved in sustaining the activity."
Assets (AM)	"The ability to efficiently utilize assets. Assets' strategies in a supply chain include inventory reduction and insourcing rather than outsourcing."

SCOR DS Sustainability Performance Attributes


Performance Attribute	Definition
Environmental (EV)	"The Environmental attribute describes the ability to operate the supply chain with minimal environmental impact, including materials, water, and energy."
Social (SC)	"The Social attribute describes the ability to operate the supply chain aligned with the organization's social values, including diversity and inclusion, and training metrics."



SCOR DS Performance Metrics

Resilience	Economic	Sustainability	
 Reliability Perfect customer order fulfillment Perfect supplier order fulfillment Perfect return order fulfillment 	CostsTotal supply chain management costCost of goods sold	 Environmental Materials used Energy consumed Water consumed 	
ResponsivenessCustomer order fulfillment cycle time	 Profit Earnings before interest and taxes (EBIT) as a percent of revenue Effective tax rate 	 Greenhouse gas (GHG) emissions Waste generated 	
Agility Supply chain agility (strategic or operational) 	Assets Cash-to-cash cycle time Return on fixed assets Return on working capital 	Social Diversity and inclusion Wage level Training 	

Digital Capabilities Model for Supply Networks

Capability	Description	SCOR DS Linkages
Connected customer	Inspire at start of customer life cycle; service at the end.	Order, orchestrate
Product development	Do proactive product life-cycle management.	Orchestrate
Synchronized planning	Leverage human and process capabilities for planning efficiency.	Plan, orchestrate
Intelligent supply	Leverage technologies to reduce costs.	Source, orchestrate
Smart operations	Digital transformation for connectivity, agility, and proactivity.	Transform, orchestrate
Dynamic fulfillment	Add order fulfillment speed and agility.	Fulfill, return, orchestrate

Financial Performance Ratios

Strategic Profit Model Example 1

Net Profit Margin × Asset Turnover

 $ROA = \frac{Net Profit}{Total Assets}$

				·	
_	/	Net Profit		Net Sales	١
=		Net Sales	×	Total Assets]

	А	В	С	D	E	F	G	Н		J
1									USD 1,000	Net Sales
2							USD 200	Gross Profit =	USD 800	- Cost of Goods Sold
3									USD 80	Variable Expenses
4					USD 60	Net Profit =	USD 140	- Total Expenses =	USD 60	+ Fixed Expenses
5			0.06	Net Profit Margin =	USD 1,000	Net Sales				
6	0.143	Return on Assets =							USD 180	Inventory
7			2.38	x Asset Turnover =	USD 1,000	Net Sales			USD 40	+ Accounts Receivable
8					USD 420	Total Assets =	USD 280	Current Assets =	USD 60	+ Other Current Assets
9							USD 140	+ Fixed Assets		
10										
11	0.143	Return on Assets =	USD 60	Net Profit						
12			USD 420	Total Assets						

Strategic Profit Model Example 2

Reduction in inventory, carrying cost, and net sales

	A B	С	D	Е	F	G	Н	I	J
1								USD 990	Net Sales
2						USD 190	Gross Profit =	USD 800	- Cost of Goods Sold
3								USD 70	Variable Expenses
4				USD 60	Net Profit =	USD 130	- Total Expenses =	USD 60	+ Fixed Expenses
5		0.061	Net Profit Margin =	USD 990	Net Sales				
6	0.158 Return on Assets =							USD 140	Inventory
7		2.61	x Asset Turnover =	USD 990	Net Sales			USD 40	+ Accounts Receivable
8				USD 380	Total Assets =	USD 240	Current Assets =	USD 60	+ Other Current Assets
9						USD 140	+ Fixed Assets		

Benchmarking

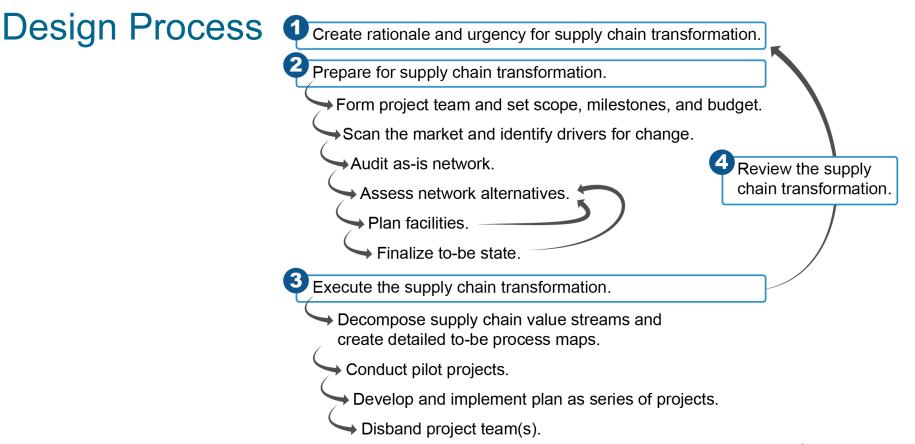
- Competitive: Apples to apples
- Best-in-class: Inspire
- Process: Qualitative checklists
- Internal: Replicate local success

Benchmarking Tools: SCORmark example

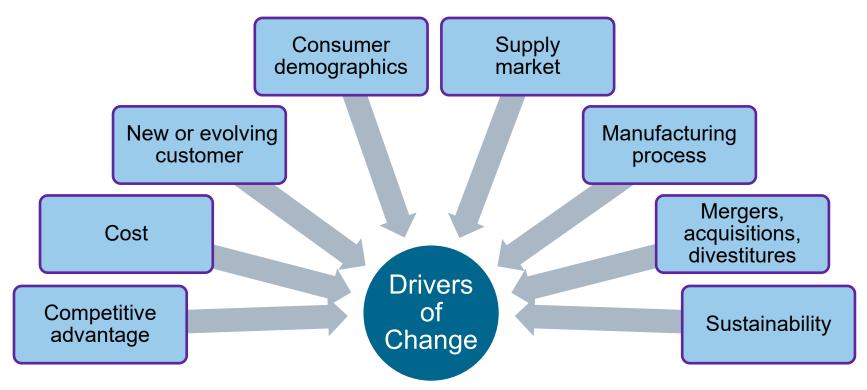
- Versus competitors
 - Superior: >90%
 - Advantage: >70%
 - Parity: >50%
- Benchmark metrics readily available, e.g.,
 - SCORmark: Compare against 1,000 organizations and 2,000 supply chains.

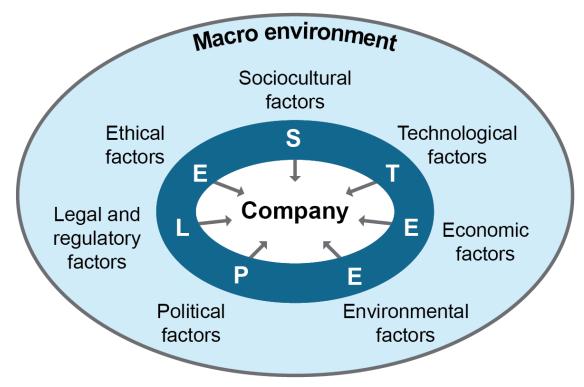
Attribute	Metrics	Target Performance	Your Organization	Parity (50%)	Advantage (70%)	Superior (90%)	Gap to Target
Reliability	Perfect customer order fulfillment	Advantage	70%	X 77%	85%	93%	-15%
Responsiveness	Peness Customer order fulfillment cycle time		6	9.1	7 🗙	4	3.1
Agility	Supply chain agility, strategic (days)	Parity	35	X 30	25	20	-5
Cost	Total supply chain management cost (% of revenue)	Advantage	8%	8.70% <mark>X</mark> L	5%	2.40%	-3%
Profitability	EBIT (as a % of revenue)	Parity	16%	14%	X 17%	20%	2%
Assets	Cash-to-cash cycle time (days)	Superior	52	55.4 <mark>X</mark>	30.5		-52
Environmental	Waste generated (metric tons)	Parity	14.3	X 13.4	11.2	9.2	-0.9
Social	Training (hours per year)	Advantage	80	X 82.1	91.5	100.1	-11.5

X Your organization

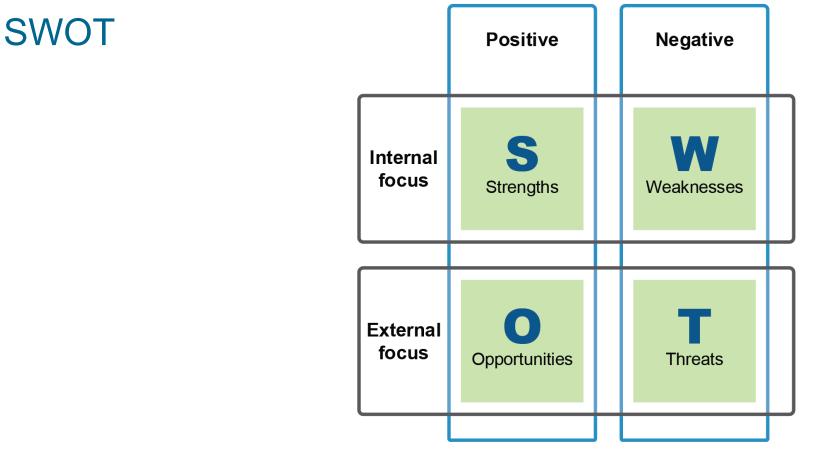

Source: Adapted from SCOR-Professional Training. Used with permission. Values are for example only.

MODULE 9, SECTION C: FACILITATE FACILITIES PLANNING AND NETWORK DESIGN




PICS

Common Drivers of Change



Scanning the Market: STEEPLE

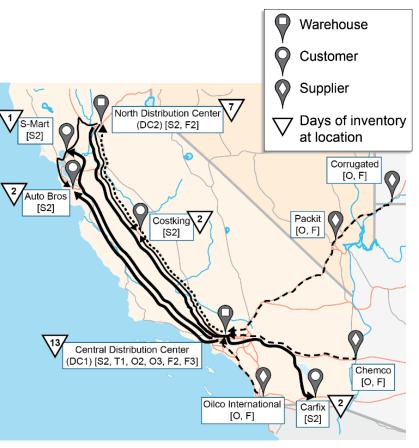
As-Is Audit Steps

Gather data and business information.

Map current system (e.g., nodes and links).

Describe key activities and functions.

Measure against benchmarks.

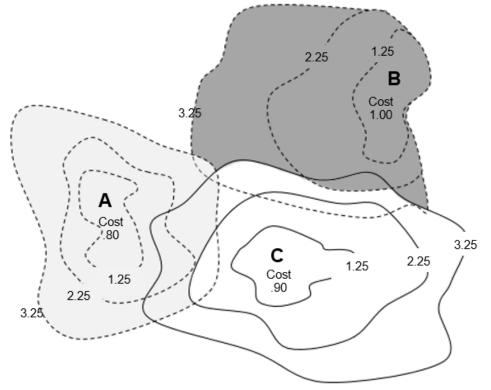

List gaps between actual and strategy.

Generate tactical plans for closing gaps.

Design Supply Chain Strategy with End in Mind

Low-cost	Cost: superior; assets and reliability: advantage; parity for rest	
Customer with high demand variability	Agility: superior; responsiveness and reliability: advantage; efficiency areas: parity	
Project-driven customers	Reliability: superior; agility and responsiveness: advantage; efficiency areas: parity	
Customer-supplier long-term partnership	Profit: superior; reliability and (for example) sustainability: advantage; parity for rest	
Customers needing innovative or emergency capacity	Agility: superior; responsiveness and assets: advantage; parity for rest	

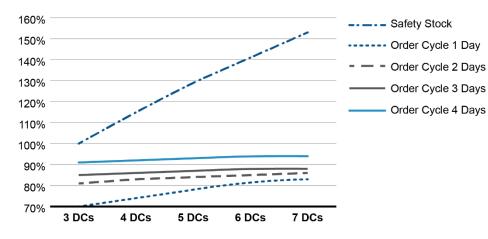
Determine Servicing Expectations



Why is information on customers' acceptable lead times or network servicing frequency so important to network design?

Answer:

Dictates number of distribution centers (DCs) that will be needed.


Economic Cost Map

Sensitivity Analysis

Order Cycle Durations More Reliable with More DCs

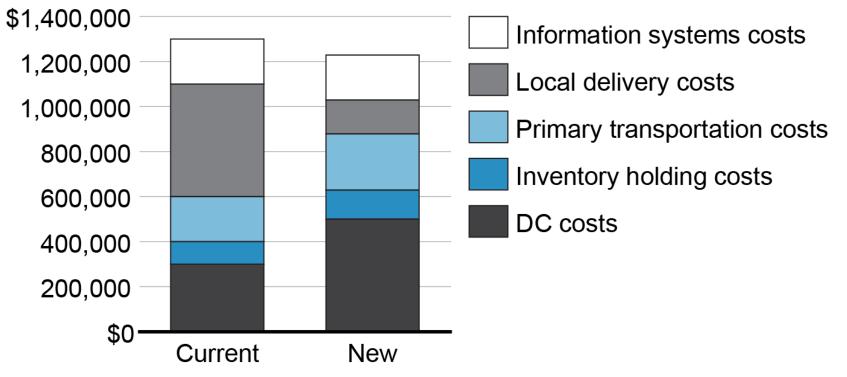
New Aggregate Safety Stock

 $= \sqrt{\frac{\text{Future Total DCs}}{\text{Existing DCs}}} \times \text{Existing}$

Aggregate Safety Stock

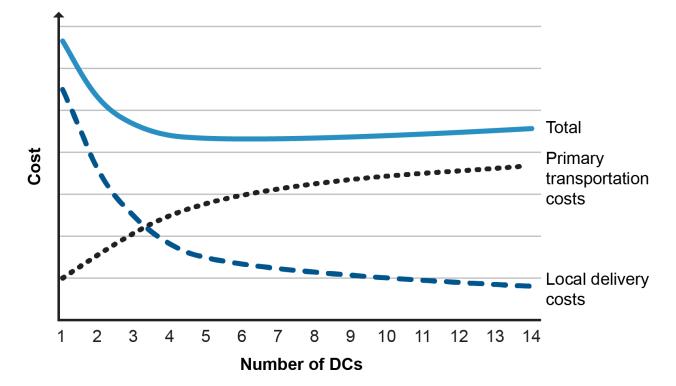
• From 3 to 4 DCs =
$$\sqrt{\frac{4}{3}} \times 100\% = 115\%$$

Transportation Requirements Analysis


Average shipments per period. Inputs:

- Product family demand forecast
- Sales and marketing commitments

Aggregate network transportation requirements. Can break down:

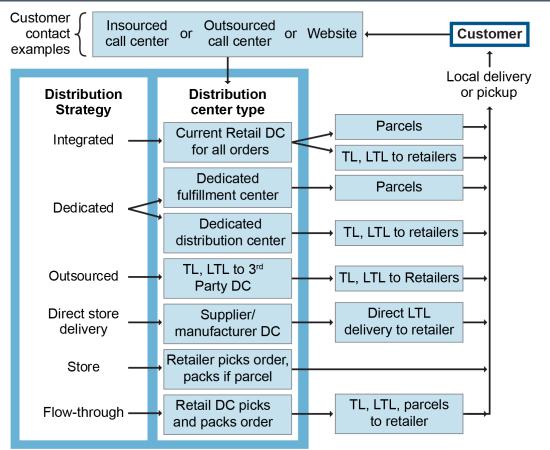

- Requirements per mode with average rates
- Estimated proportion of full and partial loads
- Primary transportation and local delivery segments
- Lane volumes

Tradeoff Analysis

Tradeoffs

Impact of DC Locations on Inventory Levels

- Adding locations doesn't impact cycle stock.
- Safety stock rises, but rate slows.
 - Shorter outbound order cycle time, less variability, less need for safety stock.
- Less in-transit inventory.
- Increased inbound order cycle time and in-transit time.
- Average Aggregate Inventory =

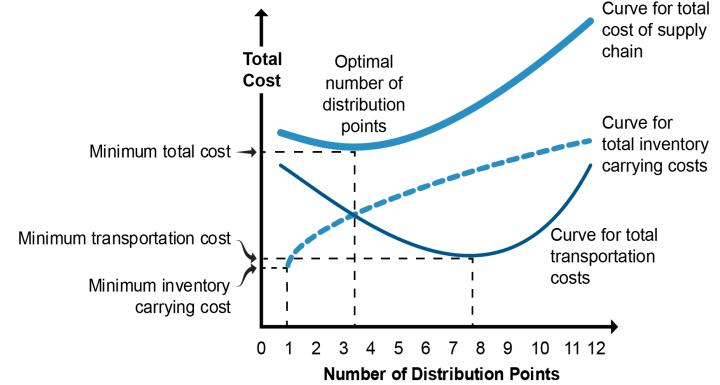

 $\sum_{i=1}^{n} \frac{\text{Order Quantity}_{i}}{2} + \text{Safety Stock}_{i} + \text{In-Transit Inventory}_{i}$

Evaluate Facility Requirements

Types of Distribution Strategies, Distribution Networks, and Order Fulfillment Channels

- Distribution strategy: general goals
- Distribution network: Implementation
- Order fulfillment channel: Specific routes

Evaluate Facility Requirements


Geographical Considerations and Factors

Strategy	 Capital expense Location: mission, vision, and organizational strategy
Labor rates	Rates and skill availabilityPlus long-distance transport cost
Quality	Quality may be cultural imperativeHigher labor costs typical
Nation/region incentives	 Taxes, proximity, incentives, strategic or cultural factors

Make Facility Number, Type, and Location Decisions

Cost of Distribution Centers

Make Facility Number, Type, and Location Decisions

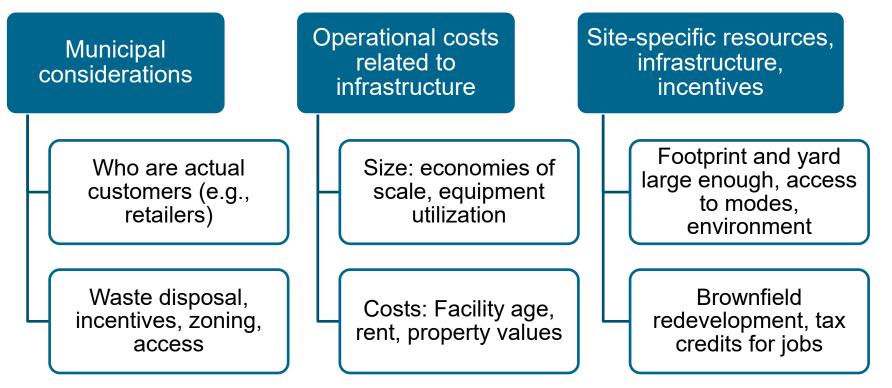
Deployment Considerations

Proximity

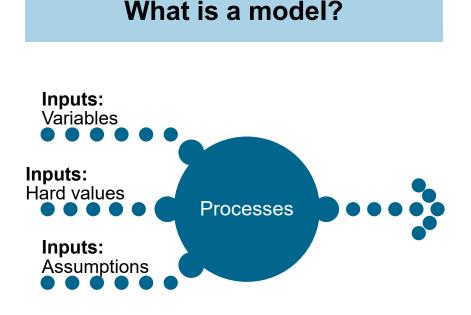
- Weight
- Fuel
- Average lead time
- Demographics

Specialty Types

- Dangerous goods (hazmat)
- Reverse
 logistics
- Cold chain

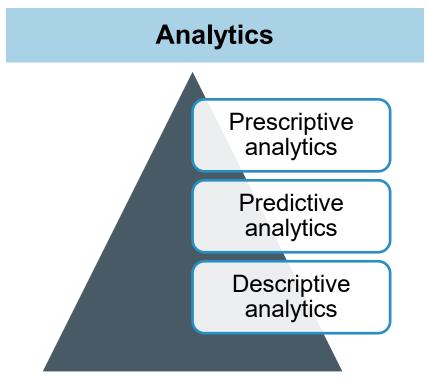

Viable Alternatives

- E.g., crossdocking versus fulfillment, consolidation, or break-bulk
- Communications robust enough to cross dock?


Make Facility Number, Type, and Location Decisions

Site-Specific Considerations

Modeling Basics and Prerequisites



Prerequisites

- Data validation: automate
- Data integrity:
 - ALCOA (attributable, legible, contemporaneous, original, accurate)
 - GIGO
- Complexity and assumptions reviews
- Static or dynamic decision

Analytics and Heuristics

Heuristics

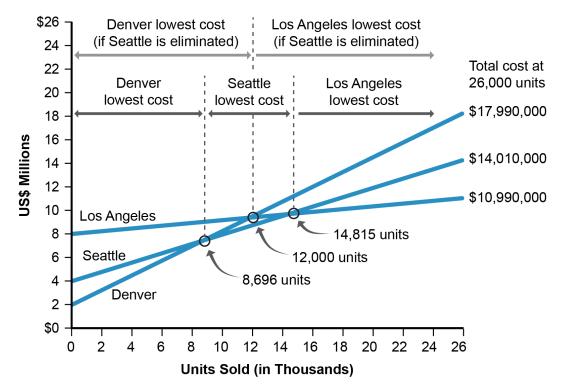
- Problem solving
- Results or rules from experience or intuition (not optimization)
- Experiment to approximate
- Trade accuracy for speed
- Decision rules and math
- Examples:
 - Forecasting
 - Inventory levels
 - Staffing

Cost-Volume Analysis

Total Cost = Fixed Cost + (Variable Cost × Volume)

What is the crossover point?

City	Fixed Costs	Variable Costs	Maximum Units	Total Cost at Maximum Units
Denver	\$2,000,000	\$615	26,000	\$17,990,000
Seattle	\$4,000,000	\$385	26,000	\$14,010,000
Los Angeles	\$8,000,000	\$115	26,000	\$10,990,000


Cost-Volume Analysis Scenario

 $x = \frac{\text{Fixed Cost}_2 - \text{Fixed Cost}_1}{(\text{Variable Cost}_1 - \text{Variable Cost}_2)}$

Denver-Seattle Crossover Point =
$$\frac{\$4,000,000 - \$2,000,000}{(\$615/\text{Unit} - \$385/\text{Unit})} = \frac{\$2,000,000}{\$230/\text{Unit}} = 8,696$$
 Units
Seattle-Los Angeles Crossover Point = $\frac{\$8,000,000 - \$4,000,000}{(\$385/\text{Unit} - \$115/\text{Unit})} = \frac{\$4,000,000}{\$270/\text{Unit}} = 14,815$ Units
Denver-Los Angeles Crossover Point = $\frac{\$8,000,000 - \$2,000,000}{(\$615/\text{Unit} - \$115/\text{Unit})} = \frac{\$6,000,000}{\$500/\text{Unit}} = 12,000$ Units

Cost-Volume Analysis Graph

Other Modeling Methods

Weighted factor rating

Qualitative and quantitative

Priority based on weight

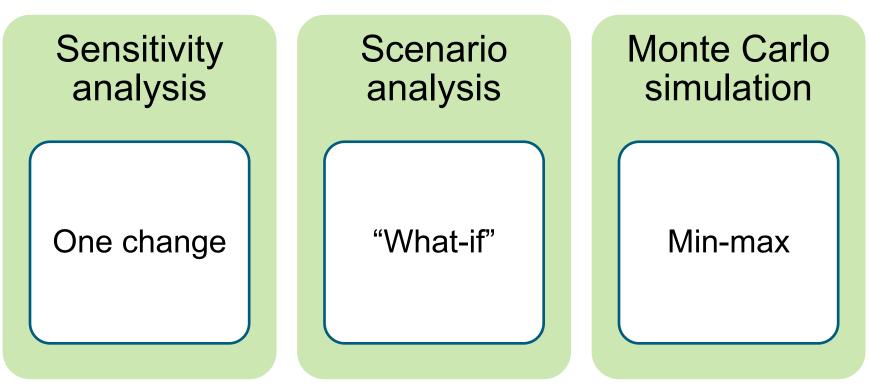
Weight × rating

Find finalists and use other tools

Regression analysis

Independent variables predict dependent variable

Center-of-Gravity Map


							A							<hr/>		1			-			
tes	10						2		0			63	0				0	_	Location	X	Y	Volume
na	9 8						5		~		12	<u>₹</u> 1	2,8			(A.,		_	London	8	10	8,000
rdi	8 7							7				2	•				\geq	~	Warsaw	16	9	9,000
Coordinates	6										6	sh	Z	1 - 1	3	7	<u>_</u>		Madrid	5	3	4,000
×	5		1	2								5-1			Yes	3	-r	3	Hamburg	12	10	11,000
	4			2	2		5	5		-		2				2	- ~	2	Rome	13	3	6,000
	3	4	6- 2-	ŕ		0			2			C	-	0			1		Center of	12	8	38,000
	2	2	Ľ						•							2		2	gravity	12	0	
	1																		0			
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16 1	17 1	X: Sum of ea	•		Sum of
X Coordinates coordinate × volume) ÷ volur sum of volumes volumes										volumes												
																			Y: Repeat for	y coor	dinates	5

Optimization

- Seeks optimum result.
- Changing any variable yields different answer.
- Significant improvement over heuristics.
- Number of DCs, location, own or lease, make-or-buy, postponement.
- Can use worksheet tools for simple problems.
- ERP systems have network optimization modules.

Simulation

Validate Network Design Performance

Forecasting, Benchmarking, and Financial Performance

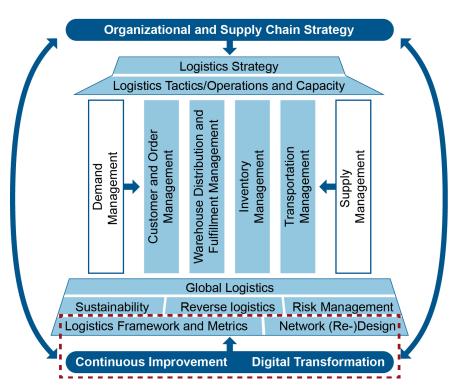
Forecasting	 Long-term forecast→ Logistics capacity New markets, economic conditions
Benchmarking	Best in classSame industry or same process
Financial Performance Evaluation	 Budget/project accounting variances Savings/revenue offset cost of funds?

Validate Network Design Performance

Analytics for Supply Chain (Re)Design

Attribute	Metrics	Target Performance	Your Organization	Parity (50%)	Advantage (70%)	Superior (90%)	Gap to Target
Reliability	Perfect customer order fulfillment	Advantage	70%	X 77%	85%	93%	-15%
Responsiveness	Customer order fulfillment cycle time	Parity	6	9.1	7 🗙	4	3.1
Agility	Supply chain agility, strategic (days)	Parity	35	X 30	25	20	-5
Cost	Total supply chain management cost (% of revenue)	Advantage	8%	8.70% <mark>X</mark> L	5%	2.40%	-3%
Profitability	EBIT (as a % of revenue)	Parity	16%	14%	X 17%	20%	2%
Assets	Cash-to-cash cycle time (days)	Superior	52	55.4 X	30.5		-52
Environmental	Waste generated (metric tons)	Parity	14.3	X 13.4	11.2	9.2	-0.9
Social	Training (hours per year)	Advantage	80	X 82.1	91.5	100.1	-11.5
						X Your org	ganization

Source: Adapted from SCOR-Professional Training. Used with permission. Values are for example only.



MODULE 9, SECTION D: COORDINATE DIGITAL TRANSFORMATION AND CONTINUOUS IMPROVEMENT

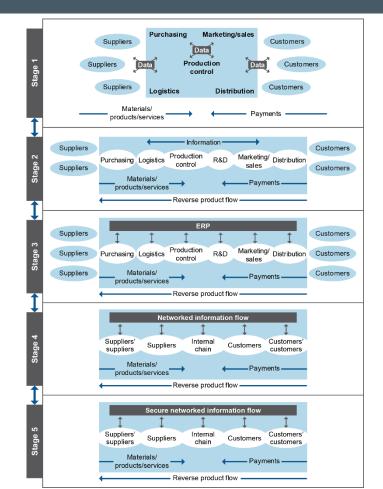
Digital Transformation and Reengineering

Digital Transformation and Reengineering

- Reengineering
 - Rethinking and redesign
 - Process emphasis
- Digitization: electronic version
- Digitalization: Adds efficient transaction
- Automation: Omits human intervention

Digital transformation

Seamless process integration
 even with external partners


Fundamental Changes

- Outcomes not tasks.
- If use process: drive it.
- Capture data at source.
- Decision point where work done.
- Dispersed resources as if centralized.

- Sequential into parallel.
- Design for dominant flow.
- Postpone product.
- Resource pool to avoid suboptimization.
- No partner task duplication.
- Outsource non-core.

Supply Chain Maturity

- **Stage 1**—Multiple dysfunction
- **Stage 2** Semifunctional enterprise
- **Stage 3**—Integrated enterprise
- **Stage 4**—Extended enterprise
- Stage 5—Orchestrated supply chain

Support Digital Transformation

Other Maturity Assessment Tools

- PwCs maturity model for SCORmark
- Deloitte-TM Forum: customer, strategy, technology, operations, organization & customer
- Maturity models for specific industries

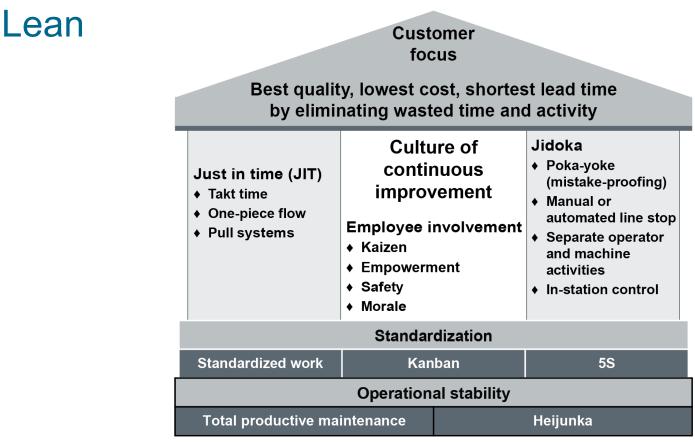
- DCM for Supply Networks
 - Connected customer
 - Product development
 - Synchronized planning
 - Intelligent supply
 - Smart operations
 - Dynamic fulfillment

Support Digital Transformation

Misalignment, Readiness, and Red Flags

Misalignment Areas

- Unspoken disagreement
- Vague goals, financials
- No support or resource commitment
- Fragmented supply chain strategies
- No technology plan


Assess Readiness

- Culture plays strong role in ability to transform.
- Resistance to change
- Times of struggle
- Technology maturity
- People

Identify Red Flags

- Decision-making bias
- Poorly training users
- Cultural issues

Lean Objectives

- 1. Make only products and services customers want.
- 2. Match production rate to demand rate.
- 3. Make with perfect quality.
- 4. Make with shortest possible lead times.
- 5. Include only features in demand, excluding the rest.
- 6. Keep labor, equipment, materials, and inventory in motion, with no waste or unnecessary movement.
- 7. Build learning and growth into each activity.

Lean's Eight Forms of Waste

Transportation

Excessive movement of people, things, information

Inventory

Storage of materials prior to demand signal

Motion

Unnecessary handling, walking, driving, bending, lifting, reaching, turning

Waiting

Idle time caused by lack of direction, instructions, information, parts, equipment

Overproduction

Make more than immediately required

Overprocessing

Higher-grade materials or tighter tolerances than required

Defects

Scrap, rework, erroneous documentation

Skills

Worker underutilization or empowerment beyond capabilities

Lean Problem-Solving Approach to Waste

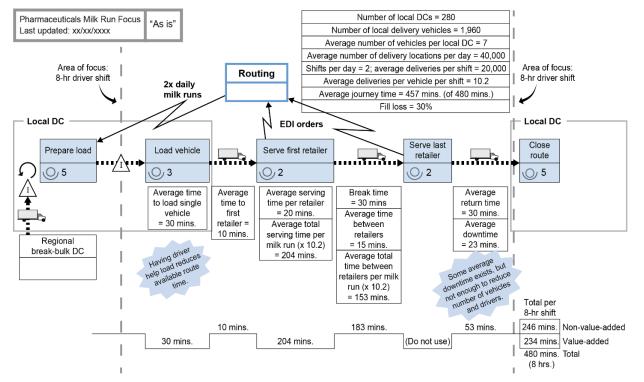
Look for waste and a cause-and-effect relationship in three major areas:

Muda

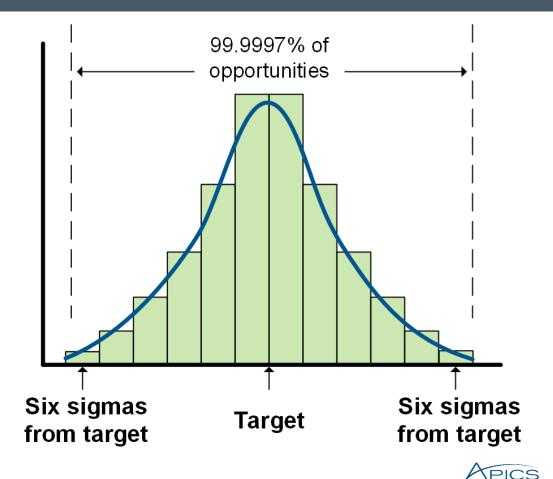
Activities that consume resources but create no customer value

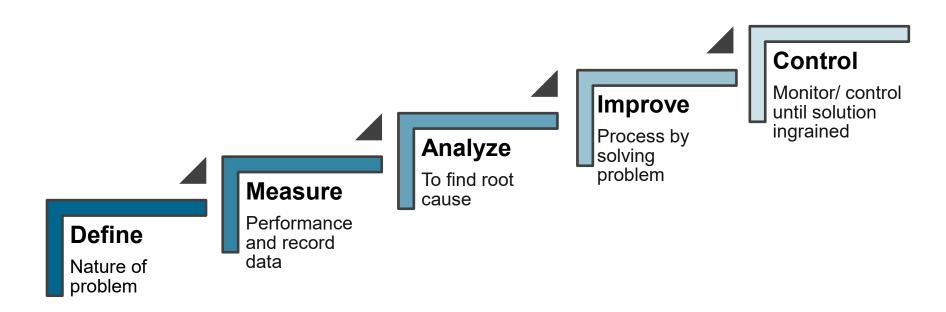
Mura

Demand or activities that are inconsistent or uneven


Muri

Overburdening of workers or processes


Lean Tool: Value Stream Mapping



Six Sigma

Limit of 3.4 defects per million "opportunities"

DMAIC Process to Generate Lasting Results

81 © 2025 APICS Confidential and Proprietary

Creating a Culture of Continuous Improvement

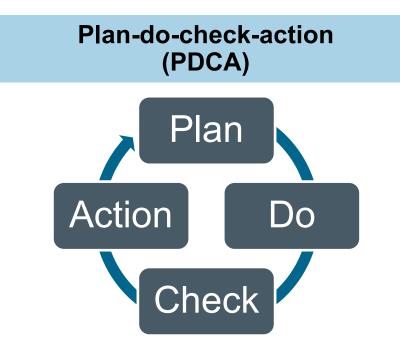
Continuous process improvement


- Incremental, regular improvements
- Expose, eliminate root causes of problems
- Small-step improvement
- Results in a week or two
- Part of ongoing operations

Continuous improvement culture

- Involves everyone
- Everyone empowered to eliminate waste
- Starts at top
- Replace hierarchy with learning/experimentation

Continuous Improvement Objectives/Cost of Poor Quality


Cost of poor quality

"The costs associated with performing a task incorrectly and/or generating unacceptable output... include the costs of nonconformities, inefficient processes, and lost opportunities."

(ASCM Supply Chain Dictionary)

Continuous Process Improvement Steps

Continuous improvement cycle

- Determine process to improve.
- Gather as-is data.
- Analyze and make to-be.
- Select best alternative.
- Implement.
- Sustain.

Commonalities Among Continuous Improvement Methods

Ensuring employee involvement and empowerment	 Keep teams small, effective. Decisions, improving task, part of job. From "Do this" to "What do you think?"
Focusing on customer	 Customer ultimate definer of quality. Perceptions, willing to pay for. Internal customers, too.
Sustaining continuous improvement	 Small step is sustainable by design. Avoids being disruptive, exhausting. Always on to next problem.

